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Abstract—While listening to spoken content, it is often desired
to vary the speech rate while preserving the speaker’s timbre
and pitch. To date, advanced signal processing techniques are
used to address this task, but it still remains a challenge to
maintain a high speech quality at all time-scales. Inspired by
the success of speech generation using Generative Adversarial
Networks (GANs), we propose a novel unsupervised learning
algorithm for time-scale modification (TSM) of speech, called
ScalerGAN. The model is trained using a set of speech utterances,
where no time-scales are provided. The ScalerGAN algorithm is
composed of a generator that gets as input speech with the desired
rate and outputs a time-adjusted speech; a discriminator that
works on various spectrum scales; and a decoder that converts
the time-adjusted signal back to the original rate to maintain
consistency. Using an A/B test and conditional A/B test, human
listeners were asked to compare ScalerGAN with other state-of-
the-art TSM methods. The results showed that the speech quality
of ScalerGAN outperforms all other methods.

Index Terms—time-scale modification, speech synthesis, gener-
ative adversarial networks, deep neural networks

I. INTRODUCTION

Time-scale modification (TSM) of speech is defined as
speeding up or slowing down a given spoken utterance while
maintaining the voice attributes such as speaker identity (in-
cluding the original pitch), intelligibility, and naturalness. This
task can be used to personalize the speaking rate when listen-
ing to spoken content such as podcasts or during language
learning.

Existing approaches are based on advanced signal process-
ing, which are often based on time-domain [1] or spectral-
domain [2], [3] Overlap-Add (OLA). Related works are
detailed in Section II. All those methods assume quasi-
stationarity of the input speech. Hence they suffer from
perceivable artifacts in the generated waveforms. Subjectively,
it seems that the quality of modified speech can be improved,
especially for extreme slow-down or speed-up.

In this paper, we would like to explore the possibilities of
designing and implementing TSM of speech based on deep
learning approaches. The main challenge of this task is the lack
of supervised data at different time scales. That is, we don’t
have access to training examples of genuine speech utterances
with different speaking rates.

We introduce ScalerGAN, a new deep learning algorithm
for TSM that can speed up or slow down speech signals at a
given rate. The algorithm is trained on a standard corpus of
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spoken utterances, were we denote the relative speaking rate
of an utterance in the training corpus by 1. Then, at inference
time, the input to the algorithm is an unseen speech signal
and the desired rate (can be larger or smaller than 1), and the
output is a newly generated adjusted speech, with the same
voice properties as the input speech.

Most modern speech synthesis techniques [4], [5] are for-
mulated with two main steps. The first step is to generate
time-aligned spectral features from the raw waveform input,
such as Mel-spectrogram. The second step applies a vocoder,
generating a time-domain waveform conditioned on the pre-
dicted spectral features. Our algorithm focuses on the former,
i.e., generating spectral features corresponding to a time-
scaled modified speech by the desired rate. The latter step of
converting the spectral features to a waveform is implemented
with HiFi-GAN [6], though other vocoders may be considered
[7], [8], [9], [10].

The ScalerGAN algorithm is based on Generative Adver-
sarial Networks (GANs). GAN is a class of machine-learning
framework that includes a generation network that generates
candidates and a discriminative network that evaluates them.
The networks are trained simultaneously using a combined
loss function [11]. We borrow ideas from CycleGAN [12],
StarGAN [13], and InGAN [14]. These algorithms convert
images from one domain to another domain. To improve the
target image quality, and to preserve consistency, the generated
image is converted back to the original domain using an
additional generator or the same generator. These algorithms
use one or two discriminators to further stir the generator
to generate images that cannot be distinguished from “real”
images. In ScalerGAN, the speech is time-adjusted to the de-
sired rate using a generator. Then, the quality of the generated
speech is improved in two ways: (i) using a discriminator that
classifies whether the speech is real or synthetic (fake); and (ii)
using a decoder that converts the time-adjusted speech back
to the original rate to preserve consistency. The decoder is
implemented by using the generator but with an inverse rate.

Our work is related to [14], which tackles the problem of
intelligently shrinking and expanding images. Note that this
method is designed to work on a single given image: it is
trained on a single image, and then it can scale this image
only. Moreover, the method is not suitable to work with speech
signals. The reason is that the axes of images and spectrograms
do not carry the same meaning [15]. Our method, in contrast,
is trained on a speech corpus and, at inference-time, can adjust
the rate of any speech signal.

We compared ScalerGAN to eleven other methods with
six different time-scales using subjective human evaluation.
Results suggest that ScalerGAN was preferable by human
listeners over other methods at all rates.

This paper is organized as follows. In the next section, we
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present previous work. In Section III we present the problem
setting. In Section IV we introduce the model and describe its
architecture. In Section V we detail the experimental setting
and present the results. In Section VI we conclude the paper.
Samples and code are publicly available under the following
link: https://eyalcohen308.github.io/ScalerGAN.

II. RELATED WORK

The TSM task has been traditionally tackled using advanced
signal processing techniques. The most popular methods for
time-domain OLA are synchronized overlap-add (SOLA) [16],
and waveform similarity overlap-add (WSOLA) [1]. These
techniques were improved by the ESOLA method [17],
which proposes epoch-synchronous OLA time/pitch-scaling
of speech. The FESOLA algorithm [18] is a modification
of ESOLA. It proposes using a cross-correlation function
to align time-smeared epochs before overlapping the speech
segments. The overlap between frames depends on the time-
scaling factor.

In contrast, there are several spectral domain OLA methods,
where the most prominent method is the Phase-Vocoder (PV)
[19]. Identity Phase-Locking Phase Vocoder (IPL) and Scaled
Phase Locking (SPL) methods [2] are an improvement of PV.
These techniques allow direct manipulation of the signal in the
frequency-domain, by pitch-shifting, chorusing, harmonizing,
and partial stretching. The PhaVoRIT algorithm [3] uses multi-
resolution peak-picking, sinusoidal trajectory heuristics, and
silent passage phase reset techniques for improving the audio
quality of IPL and SPL. Furthermore, harmonic persuasive
separation (HPTSM) [19] suggests to modify the harmonic
component of the signal with phase vocoder and the noise-
like percussive components with a simple time-domain OLA.

Recently, the µTVS method [20] proposed time-scaling the
instantaneous amplitude and the instantaneous phase of a filter
bank of time-varying sinusoids.

III. PROBLEM SETTINGS

Given a speech utterance, our goal is to speed up or slow
down the speech by a given rate r ∈ R, while keeping
the intelligibility and speaker identity as much as possible.
Throughout the paper, we use the term rate to denote the
desired change of the speaking rate and, later on, use the term
scale in relation to various scale representations of the signal.
The rate r can be higher or lower than 1, which corresponds
to slow-down or speeding-up, respectively.

The input speech is represented as a sequence of acoustic
features, such as Mel-spectrum or short-time Fourier transform
(STFT), denoted by x̄ = (x1, · · · , xN ), so every frame xi ∈
X ⊂ Rd for 1 ≤ i ≤ N is a d-dimensional vector. We denote
the domain of all finite-length sequences by X ∗.

The model synthesizes a new time-scaled sequence of
acoustic features denoted by ȳ = (y1, · · · , yM ), where yj ∈ X
for 1 ≤ j ≤ M , and M = ⌈Nr⌉ is the target size of the output.

Our goal is to learn a generative function G : X ∗×R → X ∗

that given a finite-length sequence and the desired rate r will
generate a finite sequence with a scaled duration according
to the given rate r. The most trivial implementation of the

Fig. 1. The ScalerGAN model. The generator G gets a spectrogram x̄ and
a rate r as input, and generates a new time-adjusted spectrogram ȳ. During
training, the resulting spectrogram is further processed by a discriminator D
that gets as input either x̄ or ȳ and decides whether the input is real or fake.
Parallel to that, a decoder gets ȳ as input and tries to reconstruct x̄ back
from it, where the decoder is implemented using the same generator G. At
inference time, we use a vocoder to convert the spectrogram into a waveform.

function G is by resampling the original signal x̄. However,
this implementation does not maintain the speaker identity,
pitch, and intelligibility of the spoken content [21].

IV. MODEL

Recall that the main challenge of designing a time-scale
system based on machine learning is that we do not have
training examples of different rates. In this section, we describe
ScalerGAN unsupervised network architecture. A generator G
gets as input the spectrogram x̄ and the desired rate r and
outputs a spectrogram ȳ time-scaled to the desired rate r.
During training, the resulting time-scaled spectrogram ȳ is
then evaluated using two networks. The first network is a
multi-scale discriminator D trained to discriminate between
real and time-scaled (“fake”) inputs. The second network is a
decoder that re-generates the original spectrogram x̄ with the
same generator G, operated with a rate of r−1 instead of r. The
reconstructed spectrogram x̄′ is evaluated by comparing it to
the original spectrogram x̄. At inference time, the spectrogram
ȳ is converted to a waveform using a neural-based vocoder [6].
The proposed architecture is depicted in Figure 1.

In more detail, the generator G : X ∗ × R → X ∗ consists
of two components: (i) an operator T r that interpolates the
input spectrogram by a factor r on the time domain; and (ii)
a deep network in the form of U-Net [22]. The decoupling
between the U-Net and the transformation T r allows us to train
G on speech spectrograms regardless of specific rate r while
generalizing to any rate at inference time. The U-net learns to
transform linearly interpolated spectrograms to spectrograms
that represent the original speech. This is achieved by two
components: a discriminator and a decoder.

The discriminator D is a function that is trained to dis-
criminate between real input spectrograms and synthetically
generated spectrograms. The speaking rate is influenced by
the speed of articulation and can influence unevenly on the
spectrograms [21]. For example, changes in the rate of utter-
ance would tend to be absorbed more by the vowels than the
consonants [23]. To allow the discriminator to work on such
variations, it is designed as a set of several sub-discriminators,
each of which operates at a different scale of the spectrogram
[14]. We denote by T s×s the operator of the interpolation of
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both axes by a factor s. So if we apply T 2×2 on an image of
size 8 × 8, it means we add pixels to generate an image of
size 16× 16.

The input to each sub-discriminator is a down-scaled version
of the spectrogram x̄, where down-scaling is is implemented
by T s−1×s−1

. Each sub-discriminator Ds : X ∗ → [0, 1]∗ is
a classifier, composed of 4 convolutional layers, that predicts
whether its input is derived from a real signal or a synthetic
one (“fake”). The output of the classifier is not a single
decision but rather a probability matrix. Each element of this
matrix corresponds to a patch in the input, and represents
the probability of how realistic the patch is. The probability
matrix is up-scaled using T s×s – so that the outputs of all
the sub-discriminator have the same size. The multi-scale
discriminator, D, encourages the generator, G, to produce
more realistic output in both coarse and fine scales.

The final discriminator is a weighted sum over all outputs,

D(x̄) =
∑
s

αs T
s×s

(
Ds(T s−1×s−1

(x̄)
)
,

where αs are weights that are part of the learning parameters.
The number of patches s used is described in the next section.

The last component is a decoder. The decoder’s goal is to
reconstruct the original signal from the synthetic one. It is
implemented using the generator G where ȳ and rate of r−1

are used as input parameters, namely, x̄′ = G(x̄, r−1).
The system is trained using two loss functions. The first loss

is associated with discriminator and controlled by the least-
squares (LS) GAN objective. Specifically, the discriminator
D is trained to differentiate between a real input x̄ and one
generated by the generator, ȳ = G(x̄, r). Formally,

LLS(G,D) = Ex̄∼p(x̄)

[
(D(x̄)− J)2

]
+

Ex̄∼p(x̄)

[
D(G(x̄, r))2

]
, (1)

where J is all-ones matrix of the same size as the output
of D. The first term encourages the discriminator D to output
matrix of ones for inputs that are real spectrograms, while
the second term encourages D to be a matrix of zeros for
inputs that are time-scaled synthetic spectrograms. The second
part also pushes the generator G to generate more realistic
spectrograms that will fool the discriminator D.

The second loss function is associated with the decoder. We
would like minimize the L1 distance between x̄′ = G(ȳ, r−1)
and x̄ so as to prevent convergence to trivial solutions:

LR(G) = ∥G(G(x̄, r), r−1)− x̄∥1 , (2)

where ȳ = G(x̄; r) and x̄′ = G(ȳ; r−1). This encourages G
to avoid mode-collapse and maintain the same spectral content
before and after the model transformation. Overall, we find D
that maximizes the loss LLS and G that minimizes both loss
functions. Formally,

min
G

max
D

LLS(G,D) + λLR(G) . (3)

This is the loss that was used to train our ScalerGAN.

V. EXPERIMENTS

A. Datasets

We conducted experiments on the LJSpeech dataset [24],
a standard benchmark for speech synthesis models, and the
VCTK dataset for testing our method with unseen speakers,
similar to [25]. The LJSpeech dataset consists of 13,100 short
audio clips of a single female speaker reading passages from
7 non-fiction books with a total length of approximately 24
hours. The audio format is 16-bit PCM with a sampling rate
of 22,050Hz. For VCTK, we used a small subset named
DR-VCTK. DR-VCTK contains 28 speakers, 14 males and
14 females for training, and one male and one female for
testing. For consistency, DR-VCTK files were up-sampled
from 16,000 Hz to 22,050 Hz. We extracted Mel-spectrograms
for the above data using an FFT window size of 1024, a hop
size of 256, and 80 Mel bins.

B. Experimental Setup

The speech examples used to train the models are Mel-
spectrograms. During training we randomly sample segments
of 256 frames from the original spectrogram (and at inference,
the whole spectrogram is used).

The generator is implemented as a U-Net [22] consisting
of a bottleneck with 6 residual-blocks [26]. The discriminator
is composed of a set of 5 sub-discriminators. Each one is
implemented as a ConvNet with 4 layers with kernel sizes of
(3, 3, 3, 1) with strides (1, 2, 1, 1). We used the Leaky ReLU
activation function between the sub-discriminators layers with
a negative slope of 0.2. The input to each sub-discriminator
was a down-scaled version of the spectrogram, where the
down-scale factors were 1.2n for 0 ≤ n < 5. We used batch
normalization [27] between convolutional layers and spectral
normalization [28] in G and D layers.

Both generator and discriminator were trained with a batch
size of 24 and for 500 epochs. The learning rate for both model
was 5e-5 using ADAM optimizer [29] with β1 = 0.5, β2 =
0.999, and the trade-off between losses was λ = 0.1. At each
batch, the desired output size, determined by r, was chosen
randomly in the range [0.3, 1.8]. We used curriculum learning
for sampling r: the initial rate r was sampled from [1.0, 1.0]
and gradually transformed to be sampled from [0.3, 1.8] as the
training progressed. After 200 epochs, we trained the decoder
twice per epoch. The generator and discriminator were updated
at every iteration. All the interpolations were bilinear [30].

C. Results

We compared our method against 11 state-of-the-art meth-
ods: PhaseVocoder [2], ESOLA [17], FESOLA [18], WSOLA
[1], IPL and SPL [2], PhaVoRIT IPL and PhaVoRIT SPL [3],
Élastique, HPTSM [19], and µTVS [20]1. We evaluated our
approach with qualitative experiments with human listeners
using a crowd-sourcing platform. Our evaluation assessed the

1All the implementations were done using the TSM Toolbox [19], except
Élastique, which is a commercial state-of-the-art TSM algorithm by zPlane,
where we used a wrapper by AudioLabs. See https://www.audiolabs-erlangen.
de/resources/MIR/TSMtoolbox/
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TABLE I
MEAN SCALERGAN SUCCESS RATE IN TWO EXPERIMENTS: A/B TEST (‘AB’) AND CONDITIONAL A/B TEST (‘CAB’). THE VALUES INDICATE HOW

MANY TIMES THE SUBJECTIVE SOUND QUALITY OF THE SPEECH GENERATED BY SCALERGAN WAS BETTER THAN THE SPEECH GENERATED BY METHOD
X, FOR THE DIFFERENT RATES. VALUES ARE GIVEN AS PERCENTAGE AND A VALUE HIGHER THAN 50% MEANS SCALERGAN IS BETTER THAN METHOD
X. THE METHODS FROM LEFT TO RIGHT ARE: PHASEVOCODER [2], ESOLA [17], FESOLA [18], WSOLA [1], IPL [2], PHAVORIT IPL [3], SPL [2],

PHAVORIT SPL [3], ÉLASTIQUE1 , HPTSM [19], AND µTVS [20].

PV ES FES WS IPL P IPL SPL P SPL EL HP µTVS

Rate AB CAB AB CAB AB CAB AB CAB AB CAB AB CAB AB CAB AB CAB AB CAB AB CAB AB CAB

0.5 95.00 78.33 65.00 66.77 70.56 61.11 66.67 66.67 73.89 61.11 73.33 76.67 78.89 66.11 92.78 76.67 55.00 55.00 73.89 68.33 75.56 68.89
0.7 95.00 85.00 73.33 68.89 63.33 62.22 86.11 75.00 78.33 71.67 68.89 78.33 82.22 64.44 90.56 78.33 58.89 56.11 71.11 65.00 66.67 66.11
0.9 97.78 90.00 70.56 60.0 47.22 36.11 84.44 69.44 82.22 66.67 71.11 69.44 76.11 68.89 86.67 69.44 66.67 48.33 80.00 70.00 65.56 57.78
1.1 98.89 85.56 70.00 64.44 75.00 67.78 81.67 73.33 83.89 76.67 77.22 81.11 86.67 79.44 85.56 81.11 64.44 53.33 82.22 70.56 77.22 67.22
1.3 97.78 90.56 85.00 75.56 91.11 69.44 90.56 79.44 83.89 77.78 86.67 83.33 89.44 79.44 90.56 83.33 67.22 59.44 88.33 76.67 81.67 55.56
1.5 96.11 86.67 94.44 77.22 88.33 80.56 93.89 82.22 84.44 81.67 88.89 83.33 93.89 81.11 90.00 83.33 58.89 55.56 88.33 77.22 81.67 71.67

Overall 96.76 86.02 76.39 68.80 72.59 62.87 83.89 74.35 81.11 72.59 77.69 69.44 84.54 73.24 89.35 78.70 61.85 54.63 80.65 71.30 74.42 64.54
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Fig. 2. A/B test comparison between ScalerGAN and other methods. The
graphs shows the mean of ScalerGan’s success rates versus each of the
methods.

perceived quality of the generated audio with different time
scales. To that end, we randomly selected 20 utterances from
the LJSpeech dataset and 25 utterances from the DR-VCTK
test-set (13 males, 12 females). We used them as references
for both experiments. We generated six different time-scaled
versions for each utterance r ∈ {0.5, 0.7, 0.9, 1.1, 1.3, 1.5}
using the ScalerGAN and all other methods.

Mean Opinion Score (MOS) is a numerical measure of
subjective human evaluation, often used to measure synthe-
sized speech quality. However, MOS is often very subjective
and hard to reproduce [31]. In contrast to standard MOS
evaluations, we used a pairwise comparison that allowed us
to verify the statistical significance of our results. We used a
crowd-source platform (Amazon mTurk) with native American
English raters. Each rater was presented with 60 audio samples
during the evaluation and asked to select the most natural-
sounding one. We recorded the percent of raters that preferred
ScalerGAN over the competing method for each experiment.

We used to type of testing methods:
a) A/B Test: The first experiment was an A/B Test: raters

listened to two speech utterances, one generated by Scaler-
GAN and the competing method. The listener was tasked to
select the recording that sounded most natural and of high
perceived quality.

b) Conditional A/B Test: The second experiment was a
Conditional A/B Test: First, raters listened to the origin speech
utterance and then to the two generated speech utterances (Sca-
lerGAN and a competing method). Then, based on the origin
utterance, the raters were asked to choose which generated
speech utterances sounded the best.

Table I summarizes the ScalerGAN results versus each
method for the above two experiments. Each value in the table
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Fig. 3. A/B test comparison between ScalerGAN model and other methods.
The graphs shows the mean of ScalerGan’s success rates grouped by each
tested rate.

is the mean aggregated ScalerGAN’s success rate versus a
given method. Results suggest that ScalerGAN outperforms
all methods in both experiments. We will further present them
in two different views to better analyze the result.

We computed the statistical significance of our result. Based
on a binomial test (N = 1080), participants were significantly
more likely to prefer ScalerGAN than any other methods (the
worst p value was 3.2e− 15 for the A/B test and 0.0013 for
conditional A/B test).

In Figure 2, we show the percentage of ScalerGan compared
to other methods. We aggregated the success rate overall rates
values. It is evident that ScalerGAN outperforms all other
methods using the qualitative assessment we presented. A
closer look at the numbers shows that the tightest gap was
with the commercial system Élastique1 (denoted as ES).

In Figure 3, ScalerGan’s success rate was aggregated and
grouped by each rate. Results suggest that while ScalerGAN
is preferred at all rates, its relative improvement is even more
apparent at higher rates. At such rates, new audio samples need
to be generated in a way that maintains the same perceived
audio quality. ScalerGAN is explicitly trained to generate
new speech samples indistinguishable from real data, and
therefore can operate at high scales while maintaining high
audio quality.

VI. CONCLUSIONS

In this work, we introduced ScalerGAN, an algorithm for
time-scale modification of speech signals. Results suggest that
our proposed model has a significant advantage in subjec-
tive listening tests. Compared to the signal-processing-based
model, one major drawback of our model is its processing
time. Our future work will focus on improving this issue and
will furthermore focus on expanding the method to music.
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