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Abstract

We present a discriminative online algorithm
with a bounded memory growth, which is
based on the kernel-based Perceptron. Gen-
erally, the required memory of the kernel-
based Perceptron for storing the online hy-
pothesis is not bounded. Previous work
has been focused on discarding part of
the instances in order to keep the memory
bounded. In the proposed algorithm the in-
stances are not discarded, but projected onto
the space spanned by the previous online hy-
pothesis. We derive a relative mistake bound
and compare our algorithm both analytically
and empirically to the state-of-the-art For-
getron algorithm (Dekel et al, 2007). The
first variant of our algorithm, called Projec-
tron, outperforms the Forgetron. The sec-
ond variant, called Projectron++, outper-
forms even the Perceptron.

1. Introduction

One of the most important aspects of online learning
methods is their ability to work in an open-ended fash-
ion. Autonomous agents, for example, need to learn
continuously from their surroundings, to adapt to the
environment and maintain satisfactory performances.
A recent stream of work on artificial cognitive systems
have signaled the need for life-long learning methods
and the promise of discriminative classifiers for this
task (Orabona et al., 2007, and references therein).

Kernel-based discriminative online algorithms have
been shown to perform very well on binary classifica-
tion problems (see for example (Kivinen et al., 2004;
Crammer et al., 2006)). Most of them can be seen as
belonging to the Perceptron algorithm family. They
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construct their classification function incrementally,
keeping a subset of the instances called support set.
Each time an instance is misclassified it is added to
the support set, and the classification function is de-
fined as a kernel combination of the observations in
this set. It is clear that if the problem is not linearly
separable, they will never stop updating the classifi-
cation function. This leads eventually to a memory
explosion, and it concretely limits the usage of these
methods for all those applications where data must be
acquired continuously in time.

Several authors tried in the past to address this prob-
lem, mainly by bounding a priori the memory require-
ments. The first algorithm to overcome the unlimited
growth of the support set was proposed by Crammer et
al. (2003). The algorithm was then refined by Weston
et al. (2005). The idea of the algorithm was to discard
a vector of the solution, once the maximum dimension
has been reached. The strategy was purely heuristic
and no mistake bounds were given. A similar strategy
has been used also in NORMA (Kivinen et al., 2004)
and SILK (Cheng et al., 2007). The very first online
algorithm to have a fixed memory “budget” and at the
same time to have a relative mistake bound has been
the Forgetron (Dekel et al., 2007). A stochastic algo-
rithm that on average achieves similar performances,
and with a similar mistake bound has been proposed
by Cesa-Bianchi et al. (2006).

In this paper we take a different route. We modify
the Perceptron algorithm so that the number of stored
samples is always bounded. Instead of fixing a priori
the maximum dimension of the solution, we introduce
a parameter that can be tuned by the user, to trade
accuracy for sparseness, depending on the needs of the
task at hand. We call the algorithm, that constitutes
the first contribution of this paper, Projectron. The
Projectron is an online, Perceptron-like method that
is bounded in space and in time complexity. We derive
for it a mistake bound, and we show experimentally
that it outperforms consistently the Forgetron algo-
rithm. The second contribution of this paper is the
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derivation of a second algorithm, that we call Projec-
tron++. It achieves better performances than the Per-
ceptron, retaining all the advantage of the Projectron
listed above. Note that this is opposite to previous
budget online learning algorithms, delivering perfor-
mances at most as good as the original Perceptron.

The rest of the paper is organized as follows: in Section
2 we state the problem and we introduce the necessary
background theory. Section 3 introduces the Projec-
tron, Section 4 derives its properties and Section 4.1
derives the Projectron++. We report experiments in
Section 5, and we conclude the paper with an overall
discussion.

2. Problem Setting

The basis of our study is the well known Perceptron
algorithm (Rosenblatt, 1958). The Perceptron algo-
rithm learns the mapping f : X → R based on a set of
examples S = {(x1, y1), . . . , (xT , yT )}, where xt ∈ X
is called an instance and yt ∈ {−1,+1} is called a label.
We denote the prediction of Perceptron as sign(f(x))
and we interpret |f(x)| as the confidence in the predic-
tion. We call the output f of the Perceptron algorithm
a hypothesis, and we denote the set of all attainable
hypotheses by H. In this paper we assume that H is
a Reproducing Kernel Hilbert Space (RKHS) with a
positive definite kernel function k : X × X → R im-
plementing the inner product 〈·, ·〉. The inner product
is defined so that it satisfies the reproducing property,
〈k(x, ·), f(·)〉 = f(x)

The Perceptron algorithm is an online algorithm, in
which the learning takes place in rounds. At each
round a new hypothesis function is estimated, based
on the previous one. We denote the hypothesis esti-
mated after the t-th round by ft. The algorithm starts
with the zero hypothesis f0 = 0. On each round t, an
instance xt ∈ X is presented to the algorithm. The
algorithm predicts a label ŷt ∈ {−1,+1} by using the
current function, ŷt = sign(ft(xt)). Then, the cor-
rect label yt is revealed. If the prediction ŷt differs
from the correct label yt, it updates the hypothesis
ft = ft−1 + ytk(xt, ·), otherwise the hypothesis is left
intact, ft = ft−1. Practically, the hypothesis ft can be
written as a kernel expansion (Schölkopf et al., 2000),

ft(x) =
∑

i∈St

αik(xi,x) , (1)

where αi = yi and St is defined to be the set of instance
indices for which an update of the hypothesis occurred,
i.e., St = {0 ≤ i ≤ t | ŷi 6= yi}. The set St is called the
support set. The Perceptron algorithm is summarized
in Algorithm 1.

Algorithm 1 Perceptron Algorithm

Initialize: S0 = ∅, f0 = 0

for t = 1, 2, . . . , T do

Receive new instance xt

Predict ŷt = sign(ft−1(xt))
Receive label yt

if yt 6= ŷt then

ft = ft−1 + ytk(xt, ·)
St = St−1 ∪ {t}

else

ft = ft−1

St = St−1

end if

end for

Although the Perceptron is a very simple algorithm, it
is considered to produce very good results. Our goal
is to derive and analyze a new algorithm which attains
the same results as the Perceptron but with a minimal
size of support set. In the next section we present our
Projectron algorithm.

3. The Projectron Algorithm

Let us first consider a finite dimensional RKHS H in-
duced by a kernel such as the polynomial kernel. Since
H is finite dimensional, there is a finite number of lin-
early independent hypotheses in this space. Hence,
any hypothesis in this space can be expressed using
a finite number of examples, and the size of the sup-
port set will be bounded by the size of H. We can
modify the Perceptron algorithm to use only one set
of independent instances as follows. On each round
the algorithm receives an instance and predicts its la-
bel. On a prediction mistake, if the instance can be
spanned by the support set, namely, xt =

∑t−1
i=1 dixi,

it is not added to the support set. Instead, the coeffi-
cients {αi} in the expansion Eq. (1) are not merely
yi, i ∈ St−1, but they are changed to reflect the
addition of this instance to the hypothesis, that is,
αi = yi + ytdi, 1 ≤ i ≤ t − 1. If the instance and the
support set are linearly independent, the instance is
added to the set with αt = yt as before. This technique
reduces the size of the support set without changing
the hypothesis in any way, and was used by Downs at
al. (2001) to simplify Support Vector Machine solu-
tions.

Let us consider now the more elaborate case of an in-
finite dimensional RKHS H induced by kernels such
as the Gaussian kernel. In this case, it is not pos-
sible to find a finite number of linearly independent
vectors which span the whole space, and hence there
is no guarantee that the hypothesis can be expressed
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Algorithm 2 Projectron Algorithm

Initialize: S0 = ∅, f0 = 0

for t = 1, 2, . . . , T do

Receive new instance xt

Predict ŷt = sign(ft−1(xt))
Receive label yt

if yt 6= ŷt then

f ′
t = ft−1 + ytk(xt, ·)

f ′′
t = f ′

t projected onto the space St−1

δt = f ′′
t − f ′

t

if ‖δt‖ ≤ η then

ft = f ′′
t

St = St−1

else

ft = f ′
t

St = St−1 ∪ {t}
end if

else

ft = ft−1

St = St−1

end if

end for

by a finite number of instances. However, we can ap-
proximate the concept of linear independence with a
finite number of vectors (Csató & Opper, 2001; En-
gel et al., 2002; Orabona et al., 2007). In particular
assume that at round t of the algorithm there is a pre-
diction mistake and the mistaken instance xt should
be added to the support set. Before adding the in-
stance to the support, we construct two hypotheses:
a temporal hypothesis f ′

t using the function k(xt, ·),
that is, f ′

t = ft−1 + ytk(xt, ·), and a projected hypoth-
esis f ′′

t , which is the projection of f ′
t onto the space

spanned by St−1. That is, the projected hypothesis is
a hypothesis from the support set St−1 which is the
closest to the temporal hypothesis. Denote by δt the
distance between the hypotheses δt = f ′′

t − f ′
t . If the

norm of distance ‖δt‖ is below some threshold η, we
use the projected hypothesis as our next hypothesis,
i.e., ft = f ′′

t , otherwise we use the temporal hypothesis
as our next hypothesis, i.e., ft = f ′

t . As we show in the
next section, this strategy assures that the maximum
size of the support set is always finite, regardless of the
dimension of the RKHS H. Guided by these consider-
ations we can design a new Perceptron-like algorithm
that projects the solution onto the space spanned by
the previous support vectors whenever possible. We
call this algorithm Projectron. The algorithm is given
in Algorithm 2.

In our algorithm the parameter η plays an important
role. If η is equal to zero, we obtain exactly the same
solution of the Perceptron algorithm. In this case,

however, the Projectron solution can still be sparser
when some of the instances are linearly dependent or
when the kernel induces a finite dimensional RKHS
H. In case η is greater than zero we trade precision
for sparseness. Moreover, as shown in the next sec-
tion, this implies a bounded algorithmic complexity,
namely, the memory and time requirements for each
step are bounded. We will also derive mistake bounds
to analyze the effect of η on the classification accuracy.

We now consider the problem of deriving the projected
hypothesis f ′′

t in a Hilbert space H, induced by a kernel
function k(·, ·). Denote by Pt−1ft the projection of
ft ∈ H onto the subspace Ht−1 ⊂ H spanned by the
set St−1. The projected hypothesis f ′′

t is defined as
f ′′

t = Pt−1f
′
t . Expanding f ′

t we have

f ′′
t = Pt−1f

′
t = Pt−1 (ft−1 + ytk(xt, ·)) . (2)

The projection is an idempotent (P 2
t−1 = Pt−1) and

linear operator, hence,

f ′′
t = ft−1 + ytPt−1k(xt, ·) . (3)

Recall that δt = f ′′
t − f ′

t . Substitute f ′′
t from Eq. (3)

and f ′
t we have

δt = f ′′
t − f ′

t = ytPt−1k(xt, ·) − ytk(xt, ·) . (4)

Recall that the projection of f ′
t ∈ H onto a sub-

space Ht−1 ⊂ H is the hypothesis in Ht−1 closest to
f ′

t . Hence, let
∑

j∈St−1
djk(xj , ·) be an hypothesis in

Ht−1, where (d1, . . . , dt−1) is a set of coefficients. The
closest hypothesis is the one for which

‖δt‖
2 = min

(d1,...,dt−1)

∣

∣

∣

∣

∣

∣

∣

∣
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∑

j∈St−1

djk(xj , ·) − k(xt, ·)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

(5)
Expanding Eq. (5) we get

‖δt‖
2 = min

(d1,...,dt−1)

(

∑

i,j∈St−1

djdik(xj ,xi)

− 2
∑

j∈St−1

djk(xj ,xt) + k(xt,xt)

)

. (6)

Define Kt−1 to be the matrix generated by the in-
stances in the support set St−1, that is, {Kt−1}i,j =
k(xi,xj) for every i, j ∈ St−1. Define kt to be the
vector whose i-th element is kti

= k(xi,xt). We have

‖δt‖
2 = min

d

(

dT Kt−1d − 2dT kt + k(xt,xt)
)

, (7)

where d = (d1, . . . , dt−1)
T . Solving Eq. (7), that is,

applying the extremum conditions with respect to d,
we obtain

d⋆ = K−1
t−1kt (8)
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and, by substituting Eq. (8) into Eq. (7),

‖δt‖
2 = k(xt,xt) − kT

t d⋆ . (9)

Furthermore, substituting Eq. (8) into Eq. (3) we get

f ′′
t = ft−1 + yt

∑

j∈St−1

d⋆
j k(xj , ·) . (10)

We have shown how to calculate both the distance δt

and the projected hypothesis f ′′
t . In summary, one

needs to compute d⋆ according to Eq. (8), plug the
result either into Eq. (9) and obtain δt or into Eq. (10)
and obtain the projected hypothesis.

In order to make the computation more tractable, we
introduce an efficient method to calculate the matrix
inversion K−1

t iteratively. This method was first in-
troduced in (Cauwenberghs & Poggio, 2000), and we
give it here only for completeness. We would like to
note in passing that the matrix Kt−1 can be safely in-
verted since, by incremental construction, it is always
full-rank. After the addition of a new sample, K−1

t

becomes










0

K−1
t−1

...
0

0 · · · 0 0











+
1

‖δt‖2

[

d⋆

−1

]

[

d⋆T −1
]

(11)
where d⋆ and ‖δt‖

2 are already evaluated during the
previous steps of the algorithm. Thanks to this incre-
mental evaluation, the time complexity of the linear
independence check is O(|St−1|

2), as one can easily
see from Eq. (8).

4. Analysis

In this section we analyze the performance of the Pro-
jectron algorithm in the usual framework of online
learning with a competitor. First, we present a the-
orem which states that the size of the support set is
bounded.

Theorem 1. Let k : X ×X → R a continuous Mercer
kernel, with X a compact subset of a Banach space.
Then, for any training sequence (xi, yi), i = 1, · · · ,∞
and for any η > 0, the size of the support set of the
Projectron algorithm is finite.

The proof of this theorem goes along the same lines
as the proof of Theorem 3.1 in (Engel et al., 2002),
and we omit it for brevity. Note that this theorems
guarantees that the size of the support set is bounded,
however it does not state that the size of the support
set is fixed or can be estimated before training.

The next theorem provides a mistake bound. The
main idea is to bound the maximum number of mis-
takes of the algorithm, relatively to the best hypothesis
g ∈ H chosen in hindsight. Let us define D1 as

D1 =
T

∑

t=1

ℓ(g(xt), yt) (12)

where ℓ(g(xt), yt) is the hinge loss suffered by the func-
tion g on the example (xt, yt), that is, max{0, 1 −
ytg(xt)}. With these definitions we can state the fol-
lowing bound for the Projectron Algorithm.

Theorem 2. Let (x1, y1), · · · , (xT , yT ) be a sequence
of instance-label pairs where xt ∈ X , yt ∈ {−1,+1},
and k(xt,xt) ≤ R for all t. Let g be an arbitrary func-
tion in H. Assume that the Projectron algorithm is

run with 0 ≤ η < 2−R2

2‖g‖ . Then the number of predic-

tion mistakes the Projectron makes on the sequence is
at most

‖g‖2
+ 2D1

2 − R2 − 2η‖g‖

The proof of this theorem is based on the following
lemma.

Lemma 1. Let (x, y) be an example, with x ∈ X and
y ∈ {+1,−1}. Denote by f an hypothesis in H, such
that yf(x) < 1. Let f ′ = f + τyq(·), where q(·) ∈ H.
Then the following bound holds for any τ ≥ 0:

‖f − g‖2 − ‖f ′ − g‖2 ≥ τ
(

2ℓ(f(x), y) − 2ℓ(g(x), y)

−τ‖q(·)‖2−2〈f, q(·)−k(x, ·)〉−2‖q(·)−k(x, ·)‖·‖g‖
)

Proof.

‖f − g‖2 − ‖f ′ − g‖2 = 2τy〈g − f, q(·)〉 − τ2‖q(·)‖2

= 2τy(g(x) − f(x)) − τ2‖q(·)‖2

+ 2τy〈g − f, q(·) − k(x, ·)〉

≥ τ
(

2ℓ(f(x), y) − 2ℓ(g(x), y) − τ‖q(·)‖2

− 2y〈f, q(·) − k(x, ·)〉 − 2‖q(·) − k(x, ·)‖ · ‖g‖
)

With this bound we are ready to prove Thm. 2.

Proof. Define the relative progress in each round as
∆t = ‖ft−1 − g‖2 − ‖ft − g‖2. We bound the progress
from above and below. On rounds in which there is
no mistake ∆t is 0. On rounds in which there is a
mistake there are two possible updates: either ft =
ft−1 + ytPt−1k(xt, ·) or ft = ft−1 + ytk(xt, ·). In the
following we bound the progress from below, when the
update is of the former type (the same bound can be
obtained for the latter type as well, but the derivation
is omitted). In particular we set q(·) = Pt−1k(xt, ·) in
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Lemma 1 and use δt = ytPt−1k(xt, ·) − ytk(xt, ·) from
Eq. (4)

∆t = ‖ft−1 − g‖2 − ‖ft − g‖2

≥ τt

(

2ℓ(ft−1(xt), yt) − 2ℓ(g(xt), yt)

− τt‖Pt−1k(xt, ·)‖
2 − 2〈ft−1, δt〉 − 2‖δt‖‖g‖

)

.

Note that 〈ft−1, δt〉 = 0, because ft−1 belongs to
the space spanned by the functions indexed by St−1.
Moreover, on every projection update ‖δt‖ ≤ η and
using the theorem assumption ‖Pt−1k(xt, ·)‖ ≤ R, we
then have

∆t≥τt

(

2 (ℓ(ft−1(xt), yt) − ℓ(g(xt), yt))−τtR
2−2η‖g‖

)

.

We can further bound ∆t by noting that on every pre-
diction mistake ℓ(ft−1(xt), yt) ≥ 1. Overall we have

‖ft−1 − g‖2 − ‖ft − g‖2 ≥

τt

(

2 (1 − ℓ(g(xt), yt)) − τtR
2 − 2η‖g‖

)

.

We sum over t both sides. Let τt be an indicator func-
tion for a mistake on the t-th round, that is, τt is 1 if
there is a mistake on round t and 0 otherwise, hence
it can be upper bounded by 1. The left hand side of
the equation is a telescopic sum, hence it collapses to
‖f0−g‖2−‖fT −g‖2, which can be upper bounded by
‖g‖2, using the fact that f0 = 0 and that ‖fT − g‖2 is
non-negative. Finally, we have

‖g‖2 + 2D1 ≥ M
(

2 − R2 − 2η‖g‖
)

,

where M is the number of mistakes.

To compare with other similar algorithms it can be
useful to change the formulation of the algorithm in
order to use the maximum norm of g as parameter
instead of η. Hence we can fix an upper bound, U ,
on ‖g‖ and then we set η to have a positive progress.
Specifically, on each round we set η to be

1

2U

(

2ℓ(ft−1(xt), yt) − ‖Pt−1k(xt, ·)‖
2 − 0.5

)

. (13)

The next corollary, based on Thm. 2, provides a mis-
take bounds in terms of U rather than η.

Corollary 1. Let (x1, y1), · · · , (xT , yT ) be a sequence
of instance-label pairs where xt ∈ X , yt ∈ {−1,+1},
and k(xt,xt) ≤ 1 for all t. Let g be an arbitrary func-
tion in H, whose norm ‖g‖ is bounded by U . Assume
that the Projectron algorithm is run with a parameter
η, which is set in each round according to Eq. (13).
Then, the number of prediction mistakes the Projec-
tron makes on the sequence is at most

2‖g‖2
+ 4D1 .

Notice that the bound in Corollary 1 is similar to Thm.
5.1 in (Dekel et al., 2007) of the Forgetron algorithm.
The difference is in the assumptions made: in the For-
getron, the size of the support set is guaranteed to be
less than a fixed size B that depends on U , while in the
Projectron we choose the value of η or, equivalently, U ,
and there is no guarantee on the exact size of the sup-
port set. However, the experimental results suggest
that, with the same assumptions used in the deriva-
tion of the Forgetron bound, the Projectron needs a
smaller support set and produces less mistakes.

It is also possible to give yet another bound by slightly
changing the proof of Thm. 2. This theorem is a worst-
case mistake bound for the Projectron algorithm. We
state it here without the proof, leaving it for a long
version of this paper.

Theorem 3. Let (x1, y1), · · · , (xT , yT ) be a sequence
of instance-label pairs where xt ∈ X , yt ∈ {−1,+1},
and k(xt,xt) ≤ R for all t. Let g an arbitrary function
in H. Assume that the Projectron algorithm is run
with 0 ≤ η < 1

‖g‖ . Then, M , the number of prediction

mistakes the Projectron makes on the sequence is at
most





R‖g‖ +

√

R2‖g‖2
+ 4D1

2(1 − η‖g‖)





2

The last theorem suggests that the performance of
the Projectron are slightly worse than the Percep-
tron (Shalev-Shwartz & Singer, 2005). Specifically
the degradation in the performance of Projectron com-
pared to the Perceptron are related to 1/(1−η‖g‖)2. In
the next subsection we present a variant to the Projec-
tron algorithm, which attains even better performance.

4.1. Going Beyond the Perceptron

The proof of Thm. 2 and Corollary 1 direct us how
to improve the Projectron algorithm to go beyond the
performance of the Perceptron algorithm, while main-
taining a bounded support set.

Let us start from the algorithm in Corollary 1. We
change it so an update takes place not only if there is
a prediction mistake, but also when the prediction is
correct with a low confidence. We indicate this latter
case as a margin error, that is, 0 < ytft−1(xt) < 1.
This strategy improves the classification rate but also
increases the size of the support set (Crammer et al.,
2006). A possible solution to this obstacle is not to
update every round a margin error occurs, but also
when the new instance can be projected onto the sup-
port set. Hence, the update on margin error rounds



The Projectron: a Bounded Kernel-Based Perceptron

would be in the general form

ft = ft−1 + ytτtPt−1k(xt, ·) , (14)

with 0 < τt ≤ 1. The last constraint comes from proofs
of Thm. 2 and Corollary 1 in which we upper bound
τt by 1. Note that setting τt to 0 is equivalent to leave
the hypothesis unchanged. The bound in Corollary 1
becomes

M ≤ 2(‖g‖2
+ 2D1 −

∑

{t:0<ytft−1(xt)<1}

βt) , (15)

where βt bounds the progress made on margin error
round t. In particular it is easy to see from Lemma 1
that βt is

τt

(

2ℓ(ft−1(xt), yt)−τt‖Pt−1k(xt,·)‖
2 −2U‖δt‖

)

, (16)

for 0 < τt ≤ 1, and is 0 when there is no up-
date. Whenever βt is non-negative the worst-case
number of mistakes in Eq. (15) decreases, hopefully
along with the classification error rate of the algo-
rithm. Hence, we determine the optimal τt which
maximizes βt. In particular, the expression of βt

in Eq. (16) is quadratic in τt, and is maximized for
τt = ℓ(ft−1(xt), yt)/‖Pt−1k(xt, ·)‖

2. Constraining τt

to be less than or equal to 1, we have1

τt = min{ℓ(ft−1(xt), yt)/‖Pt−1k(xt, ·)‖
2, 1} . (17)

In summary, at every round t with margin error we
calculate τt according to Eq. (17), and check that βt

is non-negative. If so we update the hypothesis using
Eq. (14), otherwise we leave it untouched.

With this modification we expect better performance,
that is, fewer mistakes, but without any increase of the
support set size. We can even expect solutions with a
smaller support set, since new instances can be added
to the support set only if misclassified, hence having
less mistakes should result in a smaller support set.
We name this variant Projectron++, and in the next
section we compare it to the original version.

5. Experimental Results

In this section we present experimental results that
demonstrate the effectiveness of the Projectron and
the Projectron++. We compare both algorithms to
the Perceptron and to the budget algorithms For-
getron (Dekel et al., 2007) and Randomized Budget
Perceptron (RBP) (Cesa-Bianchi et al., 2006). For the
Forgetron, we choose the state-of-the-art “self-tuned”

1This update rule gives τt = 1 on rounds in which there
is a mistake.

variant, which outperforms its other variants. We also
use two other baseline algorithms: the first one is a
Perceptron algorithm which stops updating the solu-
tion once the support size has reached some limit, and
it is used to verify that the Projectron is better than
just stop learning. We name it Stoptron. The second
baseline algorithm is the PA-I variant of the Passive-
Aggressive learning algorithm (Crammer et al., 2006),
which gives an upper bound to the classification per-
formance that Projectron++ can reach.

We tested the algorithms with two standard machine
learning datasets: Adults9 and Vehicle2 and a syn-
thetic dataset, all of them with more than 10000 sam-
ples. The synthetic dataset is built in the same way
as in (Dekel et al., 2007). It is composed with sam-
ples taken from two separate bi-dimensional Gaussian
distributions. The means of the positive and nega-
tive samples are (1, 1) and (−1,−1), respectively, while
the covariance matrix for both is diagonal matrix with
(0.2, 2) as its diagonal. Then the labels are flipped
with a probability of 0.1 to introduce noise.

All the experiments were performed over 5 different
permutations of the training set. All algorithms used
a Gaussian kernel with σ2 equals 25, 4, and 0.5 for
Adults9, Vehicle, and the synthetic datasets, respec-
tively. The C parameter of the PA-I was set to 1,
to have an update similar to the Perceptron and Pro-
jectron. Due to the different nature of our algorithm
compared to the budget ones, we cannot select the sup-
port set size in hindsight. Hence, we compared them
using the proper conditions to obtain the same bounds.
That is, we selected the maximum support size B for
the Forgetron algorithm, which implies a maximum
value U , the norm of g, for its bound to hold. In par-
ticular U is equal to 1/4

√

(B + 1)/ log (B + 1) (Dekel
et al., 2007), where B is the budget parameter that
sets the maximum size of the support set. We then se-
lected the parameter η in the Projectron in each round
according to Eq. (13). Hence the final size of the Pro-
jectron solution will depend on U and on the particular
classification problem at hand. We have set B on each
dataset roughly to 1/2 and 1/4 of the size of the Per-
ceptron support set, for a total of 6 experiments. Note
that Projectron can also be used without taking into
account the norm of the competitor and considering η
just as a parameter. In particular η should be set to
trade accuracy for sparseness.

In Tables 1–3 we summarize the results of our experi-
ments. The cumulative number of mistakes as percent-
age of the training size (mean ± std) and the size of the

2Downloaded from http://www.sie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/.
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Table 1. Adult9 dataset, 32561 samples.
Algorithm % Mistakes Size Support Set

Perceptron 20.99%± 0.06 6835.6± 20.28
PA-I 18.11%± 0.10 12537± 36.2

B=1500

Projectron 20.95%± 0.12 1094.6± 16.06
Projectron++ 20.04%± 0.14 992.8± 9.73

Forgetron 21.90%± 0.23 1500
RBP 22.05%± 0.21 1500

Stoptron 22.73%± 2.82 1500
B=3000

Projectron 20.97%± 0.13 1499.6± 13.58
Projectron++ 20.16%± 0.11 1364.2± 4.76

Forgetron 21.41%± 0.13 3000
RBP 21.49%± 0.11 3000

Stoptron 21.04%± 1.54 3000

support set are reported. In all the experiments both
the Projectron and the Projectron++ outperform the
Forgetron and the RBP with a smaller support size.
Moreover, the Projectron++ always outperforms the
Projectron and has smaller support set. Due to its
theoretically derived formulation, it achieves better re-
sults even if being bounded, and it has better perfor-
mance than the Perceptron. In particular it gets closer
to the classification rate of the PA-I, without paying
the price of a large support set. It is interesting to note
the performances of the Stoptron: it has an accuracy
close to the other bounded algorithms in average, but
with much bigger variance. This indicates that all the
examined strategies for bounded learning are always
better than the simple procedure to stop learning, at
least to have stable performances.

Last, we show the behavior of the algorithms over time.
In Fig. 1 we show the average online error rate, that is,
the total numbers of errors on the examples seen as a
function of the number of samples for all algorithms on
the Adult9 dataset with B = 1500. Note how the Pro-
jectron algorithm closely tracks the Perceptron. On
the other hand the Forgetron stops improving after
reaching the support set size B, around 7500 samples.
The growth of the support set as a function of the
number of samples is depicted in Fig. 2. While for
PA-I and Perceptron the growth is clearly linear, it
is sub-linear for Projectron and for the Projectron++
and they will reach a maximum size and then they will
stop growing (as stated in Thm. 1). In Fig. 3 we show
the average online error rate as a function of the size of
the support set. It is clear that the Projectron and the
Projectron++ outperform the Perceptron with smaller
support set.

6. Discussion

This paper presented two different versions of a
bounded online learning algorithm. The algorithms
depend on a parameter that allows to trade accuracy

Table 2. Vehicle dataset, 78823 samples.
Algorithm % Mistakes Size Support Set

Perceptron 19.58%± 0.09 15432.0± 69.62
PA-I 15.27%± 0.05 30131.4± 21.07

B=4000

Projectron 19.63%± 0.08 3496.4± 18.39
Projectron++ 18.27%± 0.06 3187.0± 13.64

Forgetron 20.40%± 0.04 4000
RBP 20.32%± 0.04 4000

Stoptron 19.49%± 3.56 4000
B=8000

Projectron 19.62%± 0.04 4668.2± 32.88
Projectron++ 18.53%± 0.07 4309.6± 28.67

Forgetron 19.98%± 0.06 8000
RBP 19.94%± 0.06 8000

Stoptron 20.17%± 2.03 8000

Table 3. Synthetic dataset, 10000 samples.
Algorithm % Mistakes Size Support Set

Perceptron 18.80%± 0.25 1880.0± 25.12
PA-I 12.58%± 0.05 3986.8± 42.83

B=1000

Projectron 18.71%± 0.14 108.6± 2.97
Projectron++ 14.09%± 0.10 104.2± 2.39

Forgetron 18.96%± 0.32 1000
RBP 18.86%± 0.29 1000

Stoptron 17.49%± 1.77 1000
B=500

Projectron 18.70%± 0.21 98.6± 3.05
Projectron++ 14.23%± 0.10 98.6± 2.30

Forgetron 19.20%± 0.19 500
RBP 19.27%± 0.20 500

Stoptron 21.96%± 4.62 500

for sparseness of the solution. The size of the solu-
tion is always guaranteed to be bounded, therefore it
solves the memory explosion problem of the Percep-
tron and similar algorithms. Although the size of the
support set is guaranteed to be bounded, the actual
size of the support set cannot be determined in ad-
vance, like in the Forgetron algorithm, and it is not
fixed. Practically, the size of the support set of the
Projectron algorithms is much smaller than the that
of the budget algorithms.

Compared to budget algorithms it has the advantage
of a bounded support set size without removing or scal-
ing instances in the set. This keeps performance high.
We call this algorithm Projectron. Its second variant,
the Projectron++, always outperforms the standard
Perceptron algorithm, while assuring a bounded so-
lution. Another advantage over budget algorithms is
the possibility to obtain bounded batch solutions us-
ing standard online-to-batch conversion. In fact using
the averaging conversion (Cesa-Bianchi et al., 2004)
we get a bounded solution. This is not true for bud-
get algorithms, where more sophisticated techniques
have to be used (Dekel & Singer, 2005). A similar ap-
proach has been used in (Csató & Opper, 2001) in the
framework of the Gaussian Processes. However in that
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Figure 1. Average online error for the different algorithms
on Adult9 dataset as a function of the number of training
samples. B is set to 1500.
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Figure 2. Size of the support set for the different algorithms
on Adult9 dataset as a function of the number of training
samples. B is set to 1500.

paper no mistake bounds were derived and the use of
the hinge loss allows us to have sparser solution.
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