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Abstract
A significant source of errors in Automatic Speech Recogni-
tion (ASR) systems is due to pronunciation variations which
occur in spontaneous and conversational speech. Usually ASR
systems use a finite lexicon that provides one or more pronun-
ciations for each word. In this paper, we focus on learning a
similarity function between two pronunciations. The pronunci-
ations can be the canonical and the surface pronunciations of the
same word or they can be two surface pronunciations of differ-
ent words. This task generalizes problems such as lexical access
(the problem of learning the mapping between words and their
possible pronunciations), and defining word neighborhoods. It
can also be used to dynamically increase the size of the pro-
nunciation lexicon, or in predicting ASR errors. We propose
two methods, which are based on recurrent neural networks, to
learn the similarity function. The first is based on binary classi-
fication, and the second is based on learning the ranking of the
pronunciations. We demonstrate the efficiency of our approach
on the task of lexical access using a subset of the Switchboard
conversational speech corpus. Results suggest that on this task
our methods are superior to previous methods which are based
on graphical Bayesian methods.

1. Introduction
Spontaneous and conversational speech are significantly differ-
ent both acoustically and linguistically from read speech. One
of the key differences is the vast pronunciation variations in
spontaneous and conversational speech, as the speaking rate
is accelerated and consequently the pronunciation becomes re-
duced or coarticulated. Other factors, such as the neighboring
words and the speaker’s style, also influence the way words are
produced.

We distinguish between two types of pronunciations of
a word. The typical pronunciation found in a dictionary is
called canonical pronunciation, whereas the actual way in
which speakers produce the word is called surface pronunci-
ation. Spontaneous speech often includes pronunciations that
differ from the one found in the dictionary. For example, pro-
nunciations of the word “probably” in the Switchboard conver-
sational speech corpus include [p r aa b iy], [p r aa l iy], [p r
ay], etc. [1]. Fewer than half of the word productions are pro-
nounced canonically in the phonetically transcribed portion of
Switchboard [2].

In this work we propose to learn a similarity function be-
tween two pronunciation variations. The function should score
the similarity between any type of pronunciations. The input
can be, for example, canonical and surface pronunciations or it
can be two surface pronunciations. We expect such a function
to output a high number if the inputs are canonical and surface
pronunciations of the same word or if the input consists of two
surface pronunciations of the same word.

Such a similarity measure can be utilized in many tasks,
including lexical access, word neighborhood and pronunciation

scoring. In the task of lexical access, the goal is to predict which
word in the dictionary was uttered given its pronunciation in
terms of sub-word units [3, 4, 5]. The problem of lexical access
can be handled using a pronunciation similarity function as fol-
lows: the input surface pronunciation is compared to all of the
(canonical) pronunciations in the dictionary using the similarity
function, and the one with the maximal similarity is predicted
as the articulated word.

In the word neighborhood task the goal is to find the acous-
tic neighborhood density of a given word [6]. It has been sug-
gested as an explanatory variable for quantifying errors in ASR,
but is also used in linguistic studies. In most works in the psy-
cholinguistics literature, word neighborhood is defined to be the
set of words which differ by a single phone from the given word.
Here we propose a different definition which is closer to the def-
inition suggested in [6]. The word neighborhood can be defined
as all the words in the dictionary in proximity to the given word,
where proximity is measured using the similarity function be-
tween pronunciations.

ASR systems are based on a finite dictionary which pro-
vides each word with one or more pronunciations. The variance
of pronunciations in spontaneous and conversational speech
leads to a high rate of errors in ASR systems [7, 8]. The stan-
dard approach to this problem is to expand the dictionary, either
by adding alternate pronunciations with probabilities, or with
phonetic substitution, insertion and deletion rules derived from
linguistic knowledge and learned from data. A similarity func-
tion can be used to add pronunciation variations to each word
either statically or dynamically during the dictionary lookup.

Mapping between words and their possible pronunciations
in terms of sub-word units was explored in light of the lexi-
cal access task [9, 4, 5]. Note that this problem is different
from the grapheme-to-phoneme problem, in which pronuncia-
tions are predicted from a word’s spelling, whereas in lexical
access we assume a dictionary of canonical pronunciations like
the one used in speech recognition. Learning word neighbor-
hood automatically was proposed by [6].

Our work is restricted to proposing algorithms for learning
the pronunciation similarity score. Specifically we propose two
different deep network architectures to tackle this problem. The
first is based on binary classification of two recurrent neural
networks (RNNs), while the second is based on triplet networks
designed to rank the pronunciations.

The paper is organized as follows. Section 2 introduces our
notation and the problem definition. In Section 3 we propose
two deep network architectures to learn similarity between two
pronunciations. In Section 4 we present a set of experiments on
the Switchboard conversational speech corpus, and in Section 5
we analyze the experimental results. We conclude the paper in
Section 6.



2. Problem settings
We denote a word pronunciation by a sequence of phones, p =
(p1, . . . , pN ) where pn ∈ P for all 1 ≤ n ≤ N and P is the
set of all sub-word units (all phones). Naturally, N is not fixed
since the number of phonemes varies across different words.
We denote the set of all finite-length phone streams as P∗.

Given two pronunciation sequences, our goal is to find a
similarity function between these two sequences. Formally, our
goal is to learn a function f : P∗×P∗ → R which gets as input
two pronunciation sequences and returns the similarity between
the two. That is if two pronunciations p1,p2 ∈ P∗ are similar,
then the function f(p1,p2) will be high. Otherwise it will be
low.

This type of function can be utilized in various tasks. For
example, in the lexical access task [5] the goal is to predict
which word w from a finite dictionary V is associated with a
given surface pronunciation ps. Assume that the dictionary V
is a list of pairs, where each pair is composed of a word w and
its canonical pronunciation pc, namely (w,pc) ∈ V . Define
sortk as a function that gets a set of unordered scores and re-
turns a vector of the top k maximal ordered scores. Similarly
define arg sortk to be the function the returns the indices of the
ordered scores. Then the best k-words can be found to be those
whose canonical pronunciations get the highest similarity to the
input surface pronunciation:

w = arg sortk

(w,pc)∈V
f(ps,pc), (1)

where w is a list of k-best words in the dictionary. Either the
word with the highest unigram probability can be predicted or it
can be combined to generated a prediction based on the n-gram
probability.

In the word neighborhood task the goal is to find the acous-
tic neighborhood density of a given word [6]. This can be
achieved by comparing the similarity of a canonical pronuncia-
tion of a given word to the set of all canonical pronunciations in
the dictionary. Formally we propose to define word neighbor-
hood N (w) for a given word w as the set of all words u in the
dictionary V for which the similarity function is less than some
threshold θ:

N (w) = {u | ∀(u,pu) ∈ V, f(pw,pu) < θ}, (2)

where pw,pu ∈ P∗ are the canonical pronunciations of the
word w and u respectively.

3. Network architecture
Is this section we suggest two network architectures to learn
the similarity function. Both architectures are based on Recur-
rent Neural Networks (RNNs) [10]. The first one is based on
Siamese RNNs which were designed as a binary classifier and
were trained to minimize the negative log likelihood loss func-
tion. The second architecture is based on three identical RNNs,
which are combined together to create a ranking architecture
and optimized with a ranking loss function. We also tried sev-
eral sequence-to-sequence architectures [11, 12], but since all
of them led to poor results in terms of Word Error Rate (WER),
we will not discuss them in the paper.

3.1. Binary loss function

The first architecture is a network that is designed to learn a
mapping between two pronunciations using a binary classifier,

Figure 1: Network architecture of the binary loss network. The
two RNNs share the same parameters.

which is trained to predict whether two pronunciations are of
the same word. Each example in the training set ofm examples,
S = {(ps

i ,p
c
i , yi)}mi=1, is composed of a surface pronunciation

ps ∈ P∗, a canonical pronunciation pc ∈ P∗ and a binary
label y ∈ {−1,+1}, which indicates if both pronunciations are
of the same word or not.

We would like to train a neural network to learn this binary
mapping. In order to do so, we encode both pronunciations us-
ing two RNNs with a shared set of parameters. The input to
each of the RNNs is a sequence of phones, which represents
either surface or canonical pronunciations, and the output is a
real vector. Denote by vc and vs the output of the RNNs for the
canonical and the surface representations, respectively. Then,
both vectors are concatenated [vc,vs] and are fed to three fully
connected layers with shared parameters over time. The output
is a series of vectors, one for each time step. These are all con-
catenated1 and are fed to a fully-connected layer followed by
a softmax layer. The similarity function f is the output of the
softmax layer, and it can be interpreted as a probability function.
The whole network is trained so as to minimize the negative log
likelihood loss function. The network architecture is depicted
schematically in Figure 1.

3.2. Ranking loss function

A different approach to learning the similarity function is to
score the similarity between a given pronunciation and other
pronunciations according to their ranking. In order to do so we
use a slightly different training set than the one used to train the
binary network. Each example in the new training set is com-
posed of a triplet: a surface pronunciation ps ∈ P∗, a positive
canonical pronunciation p+ ∈ P∗, and a negative canonical
pronunciation p− ∈ P∗. The positive canonical pronuncia-
tion is the canonical pronunciation associated with the surface
pronunciation ps, and the negative canonical pronunciation is a
canonical pronunciation of a different word. Overall the train-
ing set of m examples is denoted S = {(ps

i ,p
+
i ,p

−
i )}

m
i=1. As

in the previous model, we represent each of the three pronun-
ciations using an RNN. The output of the RNN is fed into two
fully-connected layers and is considered to be the pronuncia-
tion embedding. Pronunciation embedding is a function g that
maps a pronunciation p ∈ P∗ to a fixed size vector, u ∈ Rn,
where u = g(p). We measure the closeness between the two
embeddings, u ∈ Rn and v ∈ Rn, using the cosine distance

1We apply sequence padding when needed.



Figure 2: Network architecture of the ranking model. The three
RNNs have share parameters and output an embedding vector.

score [13]:

dcos(u,v) =
1

2

(
1− u · v
‖u‖‖v‖

)
.

The cosine distance score between two embeddings is close to
0 if the vectors u and v are close, and close to 1 if they are far
apart. Formally, the similarity function between two pronunci-
ations p1 and p2 is defined as 1 minus the cosine distance

f(p1,p2) = 1− dcos(g(p1), g(p2)). (3)

During training we minimize the hinge loss over the cosine dis-
tance so that the score of the related canonical-surface pronunci-
ations is higher than the score of the unrelated canonical-surface
pronunciation by a margin of at least γ, where γ ∈ R+ is a pos-
itive scalar. Formally, the loss function is defined as [14, 13]:

`(ps,p+,p−) = max{0, γ − f(ps,p+) + f(ps,p−)}, (4)

where f is the similarity function defined in Eq. (3), and γ
is the margin parameter. The network architecture is depicted
schematically in Figure 2.

This architecture has three advantages over the binary ar-
chitecture: (i) the ranking optimization criterion is closer to the
notion of similarity function: related pronunciations get higher
score than unrelated ones; (ii) as a by-product we introduce the
pronunciation embedding, which maps a sequence of phones
to a fixed size vector; and (iii) we use many negative surface
pronunciations for each positive surface pronunciation and in-
crease our training data. We found that it has a great impact on
the model’s performance, and we analyze it in Section 5.

4. Experiments
We evaluated the proposed architectures on the lexical access
task, where we would like to predict the word in the dictio-
nary that is associated with a given surface pronunciation. All
experiments are conducted on a subset of Switchboard conver-
sational speech corpus that has been labeled at a fine phonetic
level [1]; these phonetic transcriptions are the input to our sim-
ilarity models. The data subsets, phone set P , and dictionary V
are the same as those previously used in [9, 4, 5]. The dictionary
contains 5,117 words, consisting of the most frequent words
in Switchboard. The base-form uses a similar, slightly smaller
phone set (lacking, e.g., nasalization). We used the same parti-
tion of the corpus as in [9, 4, 5] into 2,942 words in the training
set, 165 words in the development set, and 236 words in the test
set.

Results are presented in terms of the word error rate when
the top k predictions are considered. This is denoted by

WER@k. Table 1 summarizes the results for all our architec-
tures. For each architecture we tested three types of RNNs:
LSTM with one layer, LSTM with two layers (2-LSTM), and
bidirectional LSTM with two layers (BI-2-LSTM). We optimize
all our models using Adagrad [15] with learning rate value of
0.01. We use ReLU [16] as an activation function after each
fully connected layer. For the ranking models we use a mar-
gin value of γ = 0.3. All hyper-parameters were tuned on a
validation set.

Table 1: WER for the binary-loss model and the ranking-loss
model on the lexical access problem.

Models Test
WER@1 WER@2

dictionary lookup [2] 59.3% -
dictionary + Levenshtein dist. 41.8% -
Jyothi et al., 2011 [4] 29.1% -
Hao et al., 2012 [5] 15.2% -

B
in

ar
y LSTM 20.8% 18.2%

2-LSTM 24.6% 22.5%
BI-LSTM 21.6% 19.5%

R
an

k LSTM 25.9% 16.5%
2-LSTM 22.9% 14.8%
BI-LSTM 23.3% 15.3%

For comparison we added to Table 1 the word error rate of
other algorithms for lexical access: a dictionary lookup with and
without Levenshtein distance [9], a dynamic Bayesian network
(Jyothi et al., 2011 [4]), and discriminative structured predic-
tion model (Hao et al., 2012 [5]). It can be seen from the table
that both of our models outperform the dictionary lookup ap-
proaches and the model which is based on dynamic Bayesian
networks [4]. However the discriminative structured prediction
model [5] performs much better than any of our models. The
discriminative model was trained specifically for the lexical ac-
cess task with a unique set of feature maps, but it cannot be used
as a similarity score between two pronunciations.

The performance of the binary loss model and the rank-
ing model are almost the same, with the binary loss performing
slightly better than the rank loss. The reason is likely that it was
trained to maximize the probability that two pronunciations are
related and not to match a similarity score.

5. Analysis
In this section we analyze the performance of the ranking
model. We investigate the effect of the number of negative ex-
amples, the effect of the embedding size and present some of
the model’s outputs and the way it errs.

5.1. The effect of the number of negative samples

Recall that the ranking loss model was trained on triplet made
of a canonical pronunciation of a word, a surface pronuncia-
tion of the word (positive sample), and a surface pronunciation
which is not associated with the word (negative sample). In our
experiments the negative surface pronunciation was a surface
pronunciation of a random word.

Deep neural networks require a lot of training data in or-
der to converge to a good local minimum. We expanded the
training set by using many different negative samples for each
positive samples. In order to examine if this approach leads to
a better performance, we trained the network several times with
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Figure 3: WER@1 and WER@2 of the test set as a function of
the number of samples per example.

Figure 4: Two-dimensional t-SNE projection of the representa-
tion vectors (zoom to a specific area.)

a different number of negative samples per positive sample and
evaluated the performance on the test set.

Figure 3 shows WER@1 and WER@2 of the lexical access
task, as a function of the number of negative samples per posi-
tive one. Notice that when adding more examples the error rate
keeps decreasing until the limit of 50 negative samples, from
this point the error rate stays roughly the same.

5.2. The effect of the embedding size

Next, we investigated the effect of the pronunciation embedding
size n, i.e., the size of the output of the last layer after the RNN.
We tried different embeddings sizes, and evaluated their perfor-
mance on the validation and test sets. Table 2 summarizes the
results. From the table we see that embedding of size 40 is too
small, but the performance of embeddings of size 80 and above
are all good. We found the embedding of size 120 to yield the
best performance.

Table 2: Performance (WER) for different embedding sizes.

Dim. Test Validation
WER@1 WER@2 WER@1 WER@2

150 24.2% 16.9% 18.8% 12.7%
120 25.9% 16.5% 18.2% 11.5%
80 25.0% 17.4% 21.2% 14.6%
40 27.1% 18.7% 24.9% 15.8%

5.3. Visualization

Lastly, we performed a few visualizations in order to get a sense
of what the model learned. In Figure 4 we visualized a sub-
set from the embedding space of the canonical pronunciations

in the dictionary, using t-SNE [17] for dimensionality reduc-
tion. The words which have a similar pronunciation appear to
be close in the embeddings space.

In Table 3 we present the 4 most similar words according to
the learned similarity function for the words sense, write, die,
male, and their. Again, we can see that the most similar words
in the embedding space are the words which contain a similar
phone sequence.

Table 3: Four most similar words from the dictionary computed
in the embedding space.

word neighborhood

sense cents, since, sent, sentence
write right, ride, righty, writing
die diet, died, dying, idea
male mail, meal, may, makes
their there, they’re, there’d, there’re

In Table 4 we illustrate the predictions of the model for the
lexical access task for hard cases of surface pronunciations. The
table shows the first three predictions of the model, ordered (left
to right) from most similar to least similar. The table is sepa-
rated into two panels: the upper panel shows the correct predic-
tions made by the model and the lower panel shows incorrect
predictions. It can be seen that both the correct and the incor-
rect prediction are hard to classify, even for a human. In the
lower panel, it seems that there might be an error in the tran-
scription (e.g., [s, tcl, t, ao, r] is more similar to the predicted
word store rather than to labeled word start), or that we have
reached the limit of the possible discrimination in this task (e.g.,
[wn, ahn, n] can equally be predicted as either want or won.

Table 4: Prediction of the model for hard cases of surface pro-
nunciations.

surface pronunciation desired word predicted words

[bcl, b, ao] bought bought, bob, ball
[m, ey1, ey2, dcl, jh, er] major major, mayor, made
[f, ay1, ay2, n, ihn, ng] finding finding, fighting, flying
[pcl, p, r, aa, er] proper proper, prior, property
[n, pcl, p, eh, er, z] peppers peppers, persons, present

[s, tcl, t, ao, r] start store, star, sent
[eh, r, uw, ay1, ay2] everybody iraq, dry, era
[wn, ahn, n] want won, one, want
[pcl, p, uw, el] people pool, pull, people

6. Conclusion
We presented two very different architectures to learn similar-
ity between two phone streams. The first architecture learns the
alignment between phone streams that represent close pronun-
ciations. The second architecture is designed to learn a mapping
of a phone stream to a vector space, such that close pronuncia-
tions will have close representation in the output vector space.

Future work will explore similarity between other sub-word
units. Specifically we would like to propose a similarity func-
tion between articulatory features, and analyze it in the light of
articulatory phonology [18].
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