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Abstract

We consider latent structural versions of probit loss and ramp loss. We show that
these surrogate loss functions are consistent in the strong sense that for any feature
map (finite or infinite dimensional) they yield predictors approaching the infimum
task loss achievable by any linear predictor over the given features. We also give
finite sample generalization bounds (convergence rates) for these loss functions.
These bounds suggest that probit loss converges more rapidly. However, ramp
loss is more easily optimized on a given sample.

1 Introduction

Machine learning has become a central tool in areas such as speech recognition, natural language
translation, machine question answering, and visual object detection. In modern approaches to these
applications systems are evaluated with quantitative performance metrics. In speech recognition one
typically measures performance by the word error rate. In machine translation one typically uses the
BLEU score. Recently the IBM deep question answering system was trained to optimize Jeopardy
game show score. The PASCAL visual object detection challenge is scored by average precision in
recovering object bounding boxes. No metric is perfect and any metric is controversial, but quanti-
tative metrics provide a basis for quantitative experimentation and quantitative experimentation has
lead to real progress. Here we adopt the convention that a performance metric is given as a task loss
— a measure of a quantity of error or cost such as the word error rate in speech recognition. We
consider general methods for minimizing task loss at evaluation time.

Although the goal is to minimize task loss, most systems are trained by minimizing a surrogate loss
different from task loss. A surrogate loss is necessary when using scale-sensitive regularization in
training a linear classifier. A linear classifier selects the output that maximizes an inner product of a
feature vector and a weight vector. The output of a linear classifier does not change when the weight
vector is scaled down. But for most regularizers of interest, such as a norm of the weight vector,
scaling down the weight vector drives the regularizer to zero. So directly regularizing the task loss
of a linear classifier is meaningless.

For binary classification standard surrogate loss functions include log loss, hinge loss, probit loss,
and ramp loss. Unlike binary classification, however, the applications mentioned above involve
complex (or structured) outputs. The standard surrogate loss functions for binary classification have
generalizations to the structured output setting. Structural log loss is used in conditional random
fields (CRFs) [7]. Structural hinge loss is used in structural SVMs [13, 14]. Structural probit loss is
defined and empirically evaluated in [6]. A version of structural ramp loss is defined and empirically
evaluated in [3] (but see also [12] for a treatment of the fundamental motivation for ramp loss). All
four of these structural surrogate loss functions are defined formally in section 2.1

1The definition of ramp loss used here is slightly different from that in [3].
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This paper is concerned with developing a better theoretical understanding of the relationship be-
tween surrogate loss training and task loss testing for structured labels. Structural ramp loss is
justified in [3] as being a tight upper bound on task loss. But of course the tightest upper bound on
task loss is the task loss itself. Here we focus on generalization bounds and consistency. A finite
sample generalization bound for probit loss was stated implicitly in [9] and an explicit probit loss
bound is given in [6]. Here we review the finite sample bounds for probit loss and prove a finite
sample bound for ramp loss. Using these bounds we show that probit loss and ramp loss are both
consistent in the sense that for any arbitrary feature map (possibly infinite dimensional) optimizing
these surrogate loss functions with appropriately weighted regularization approaches, in the limit of
infinite training data, the minimum loss achievable by a linear predictor over the given features. No
convex surrogate loss function, such as log loss or hinge loss, can be consistent in this sense — for
any nontrivial convex surrogate loss function one can give examples (a single feature suffices) where
the learned weight vector is perturbed by outliers but where the outliers do not actually influence the
optimal task loss.

Both probit loss and ramp loss can be optimized in practice by stochastic gradient descent. Ramp
loss is simpler and easier to implement. The subgradient update for ramp loss is similar to a per-
ceptron update — the update is a difference between a “good” feature vector and a “bad” feature
vector. Ramp loss updates are closely related to updates derived from n-best lists in training machine
translaiton systems [8, 2]. Ramp loss updates regularized by early stopping have been shown to be
highly effective in phoneme alignment [10]. It is also shown in [10] that in the limit of large weight
vectors the expected ramp loss update converges to the true gradient of task loss. This result sug-
gests consistency for ramp loss, a suggestion confirmed here. A practical stochastic gradient descent
algorithm for structural probit loss is given in [6] where it is also shown that probit loss can be a
very effective surrogate loss for the problem of phoneme recognition. Although the generalization
bounds suggest that probit loss converges faster than ramp loss, ramp loss seems easier to optimize
may ultimately be more practical.

We formulate all the notions of loss in the presence of latent structure as well as structured labels.
Latent structure is information that is not given in the labeled data but is constructed by the prediction
algorithm. For example, in natural language translation the alignment between the words in the
source and the words in the target is not explicitly given in a translation pair. Grammatical structures
are also not given in a translation pair but may be constructed as part of the translation process. In
visual object detection the position of object parts is not typically annotated in the labeled data but
part position estimates may be used as part of the recognition algorithm. Although the presence of
latent structure makes log loss and hinge loss non-convex, latent strucure seems essential in many
applications. Latent structural log loss is formulated in [11] (hidden CRFs) and latent structural
hinge loss is formulated in [15] (latent structural SVMs).

2 Formal Setting and Review

We consider an arbitrary input space X and a finite label space Y . We assume a source probability
distribution over labeled data, i.e., a distribution over pairs (x, y), where we write Ex,y [f(x, y)] for
the expectation of f(x, y). We assume a loss function L such that for any two labels y and ŷ we have
that L(y, ŷ) ∈ [0, 1] is the loss (or cost) when the true label is y and we predict ŷ. We will work with
infinite dimensional feature vectors. We let `2 be the set of finite-norm infinite-dimensional vectors
— the set of all square-summable infinite sequences of real numbers. We will be interested in linear
predictors involving latent structure. We assume a finite set Z of “latent labels”. For example, we
might take Z to be the set of all parse trees of source and target sentences in a machien translation
system. In machine translation the label y is typically a sentence with no parse tree specified. We can
recover the pure structural case, with no latent information, by taking Z to be a singleton set. It will
be convenient to define S to be the set of pairs of a label and a latent label. An element s of S will
be called an augmented label and we define L(y, s) by L(y, (ŷ, z)) = L(y, ŷ). We assume a feature
map φ such that for an input x and augmented label s we have φ(x, s) ∈ `2 with ||φ(x, s)|| ≤ 1.2

2We note that this setting covers the finite dimensional case because the range of the feature map can be
taken to be a finite dimensional subset of `2 — we are not assuming a universal feature map.
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Given an input x and a weight vector w ∈ `2 we define the prediction ŝw(x) as follows.

ŝw(x) = argmax
s

w>φ(x, s)

Our goal is to use the training data to learn a weight vector w so as to minimize the expected loss
on newly drawn labeled data Ex,y [L(y, ŝw(x))]. We will assume an infinite sequence of training
data (x1, y1), (x2, y2), (x3, y3), . . . drawn IID from the source distribution and use the following
notations.

L(w, x, y) = L(y, ŝw(x)) L(w) = Ex,y [L(w, x, y)]

L∗ = infw∈`2 L(w) L̂n(w) = 1
n

∑n
i=1 L(w, xi, yi)

We adopt the convention that in the definition of L(w, x, y) we break ties in definition of ŝw(x) in
favor of augmented labels of larger loss. We will refer to this as pessimistic tie breaking.

Here we define latent structural log loss, hinge loss, ramp loss and probit loss as follows.

Llog(w, x, y) = ln
1

Pw(y|x)
= ln Zw(x)− ln Zw(x, y)

Zw(x) =
X

s

exp(w>Φ(x, s)) Zw(x, y) =
X

z

exp(w>φ(x, (y, z)))

Lhinge(w, x, y) =
“
max

s
w>φ(x, s) + L(y, s)

”
−

“
max

z
w>Φ(x, (y, z))

”
Lramp(w, x, y) =

“
max

s
w>φ(x, s) + L(y, s)

”
−

“
max

s
w>Φ(x, s)

”
=

“
max

s
w>φ(x, s) + L(y, s)

”
− w>Φ(x, ŝw(x))

Lprobit(w, x, y) = Eε [L(y, ŝw+ε(x))]

In the definition of probit loss we take ε to be zero-mean unit-variance isotropic Gaussian noise —
for each feature dimension j we have that εj is an independent zero-mean unit-variance Gaussian
variable.3 More generally we will write Eε [f(ε)] for the expectation of f(ε) where ε is Gaussian
noise. It is interesting to note that Llog, Lhinge, and Lramp are all naturally differences of convex
functions and hence can be optimized by CCCP.

In the case of binary classification we have S = Y = {−1, 1}, φ(x, y) = 1
2yφ(x), L(y, y′) = Iy 6=y′

and we define the margin m = yw>φ(x). We then have the following where the expression for
Lprobit(w, x, y) assumes ||Φ(x)|| = 1.

Llog(w, x, y) = ln (1 + e−m) Lhinge(w, x, y) = max(0, 1−m)

Lramp(w, x, y) = min(1,max(0, 1−m)) Lprobit(w, x, y) = Pε∼N (0,1)[ε ≥ m]

Returning to the general case we consider the relationship between hinge and ramp loss. First we
consider the case where Z is a singleton set — the case of no latent structure. In this case hinge
loss is convex in w — the hinge loss becomes a maximum of linear functions. Ramp loss, however,
remains a difference of nonlinear convex functions even for Z singleton. Also, in the case where Z
is singleton one can easily see that hinge loss is unbounded — wrong labels may score arbitrarily
better than the given label. Hinge loss remains unbounded in case of non-singleton Z . Ramp loss,
on the other hand, is bounded by 1 as follows.

Lramp(w, x, y) =
(
max

s
w>Φ(x, s) + L(y, s)

)
− w>Φ(x, ŝw(x))

≤
(
max

s
w>Φ(x, s) + 1

)
− w>Φ(x, ŝw(x)) = 1

3In infinite dimension we have that with probability one ||ε|| = ∞ and hence w+ε is not in `2. The measure
underling Eε [f(ε)] is a Gaussian process. However, we still have that for any unit-norm feature vector Φ the
inner product ε>Φ is distributed as a zero-mean unit-norm scalar Gaussian and Lprobit(w, x, y) is therefore
well defined.
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Next, as is emphasized in [3], we note that ramp loss is a tighter upper bound on task loss than
is hinge loss. To see this we first note that it is immediate that Lhinge(w, x, y) ≥ Lramp(w, x, y).
Furthermore, the following derivation shows Lramp(w, x, y) ≥ L(w, x, y) where we assume pes-
simistic tie breaking in the definition of ŝw(x).

Lramp(w, x, y) =
(
max

s
w>Φ(x, s) + L(y, s)

)
− w>Φ(x, ŝw(x))

≥ w>Φ(x, ŝw(x)) + L(y, ŝw(x))− w>Φ(x, ŝw(x)) = L(y, ŝw(x))

But perhaps the most important property of ramp loss is the following.

lim
α→∞

Lramp(αw, x, y) = L(w, x, y) (1)

This can be verified by noting that as α goes to infinity the maximum of the first term in ramp loss
must occur at s = ŝw(x).

Next we note that Optimizing Lramp through subgradient descent (rather than CCCP) yields the
following update rule (here we ignore regularization).

∆w ∝ φ(x, ŝw(x))− φ(x, ŝ+
w(x, y)) (2)

ŝ+
w(x, y) = argmax

s
w>φ(x, s) + L(y, s)

We will refer to (2) as the ramp loss update rule. The following is proved in [10] under mild
conditions on the probability distribution over pairs (x, y).

∇wL(w) = lim
α→∞

αEx,y

[
φ(x, ŝ+

αw(x, y))− φ(x, ŝw(x))
]

(3)

Equation (3) expresses a relationship between the expected ramp loss update and the gradient of
generalization loss. Significant empirical success has been achieved with the ramp loss update rule
using early stopping regularization [10]. But both (1) and (3) suggests that regularized ramp loss
should be consistent as is confirmed here.

Finally it is worth noting that Lramp and Lprobit (but not Llog or Lhinge) are immediately meaningful
for an arbitrary prediction space S, label space Y , and loss function L(y, s) between a label and a
prediction. The framework of independent prediction and label spaces is explored more fully in [5]
where a general notion of weak-label SVM is defined.

3 Consistency of Probit Loss

We start with the consistency of probit loss which is easier to prove. We consider the following
learning rule where the regularization parameter λn is some given function of n.

ŵn = argmin
w

L̂n
probit(w) +

λn

2n
||w||2 (4)

We now observe the following fairly straightforward consequence of a generalization bound appear-
ing in [6].
Theorem 1 (Consistency of Probit loss). For ŵn defined by (4), if the sequence λn increases without
bound, and λn lnn/n converges to zero, then with probability one over the draw of the infinite
sample we have limn→∞ Lprobit(ŵn) = L∗.

Unfortunately, and in contrast to simple binary SVMs, for a latent binary SVM (an LSVM) there
exists an infinite sequence w1, w2, w3, . . . such that Lprobit(wn) approaches L∗ but L(wn) remains
bounded away from L∗ (we omit the example here). However, the learning algorithm (4) achieves
consistency in the sense that the stochastic predictor defined by ŵn + ε where ε is Gaussian noise
has a loss which converges to L∗.

To prove theorem 1 we start by reviewing the generalization bound of [6]. The departure point
for this generalization bound is the following PAC-Bayesian theorem where P and Q range over
probability measures a given space of predictors and L(Q) and L̂n(Q) are defined as expectations
over selecting a predictor from Q.
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Theorem 2 (Catoni [1], see also [4]). For any fixed prior distribution P and fixed λ > 1/2 we
have that with probability at least 1 − δ over the draw of the training data the following holds
simultaneously for all Q.

L(Q) ≤ 1
1− 1

2λ

(
L̂n(Q) + λ

(
KL(Q,P ) + ln 1

δ

n

))
(5)

For the space of linear predictors we take the prior P to be the zero-mean unit-variance Gaussian
distribution and for w ∈ `2 we define the distribution Qw to be the unit-variance Gaussian centered
at w. This gives the following corollary of (5).
Corollary 1 (Keshet et al. [6]). For fixed λn > 1/2 we have that with probability at least 1− δ over
the draw of the training data the following holds simultaneously for all w ∈ `2.

Lprobit(w) ≤ 1
1− 1

2λn

(
L̂n

probit(w) + λn

( 1
2 ||w||

2 + ln 1
δ

n

))
(6)

To prove theorem 1 from (6) we consider an arbitrary unit-norm weight vector w∗ and an arbitrary
scalar α > 0. Setting δ to 1/n2, and noting that ŵn is the minimizer of the right hand side of (6),
we have the following with probability at least 1− 1/n2 over the draw of the sample.

Lprobit(ŵn) ≤ 1
1− 1

2λn

(
L̂n

probit(αw∗) + λn

( 1
2α2 + 2 ln n

n

))
(7)

A standard Chernoff bound argument yields that for w∗ and α > 0 selected prior to drawing the
sample, we have the following with probability at least 1− 1/n2 over the choice of the sample.

L̂n
probit(αw∗) ≤ Lprobit(αw∗) +

√
lnn

n
(8)

Combining (7) and (8) with a union bound yields that with probability at least 1− 2/n2 we have the
following.

Lprobit(ŵn) ≤ 1
1− 1

2λn

(
Lprobit(αw∗) +

√
lnn

n
+ λn

( 1
2α2 + 2 ln n

n

))
Because the probability that the above inequality is violated goes as 1/n2, with probability one over
the draw of the sample we have the following.

lim
n→∞

Lprobit(ŵn) ≤ lim
n→∞

1
1− 1

2λn

(
Lprobit(αw∗) +

√
lnn

n
+ λn

( 1
2α2 + 2 ln n

n

))
Under the conditions on λn given in the statement of theorem 1 we then have

lim
n→∞

Lprobit(ŵn) ≤ Lprobit(αw∗).

Because this holds with probability one for any α, the following must also hold with probability one.

lim
n→∞

Lprobit(ŵn) ≤ lim
α→∞

Lprobit(αw∗) (9)

Now consider

lim
α→∞

Lprobit(αw, x, y) = lim
α→∞

Eε [L(αw + ε, x, y)] = lim
σ→0

Eε [L(w + σε, x, y)] .

We have that limσ→0 Eε [L(w + σε, x, y)] is determined by the augmented labels s that are tied for
the maximum value of w>Φ(x, s). There is some probability distribution over these tied values that
occurs in the limit of small σ. Under the pessimistic tie breaking in the definition of L(w, x, y) we
then get limα→∞ Lprobit(αw, x, y) ≤ L(w, x, y). This in turn gives the following.

lim
α→∞

Lprobit(αw) = Ex,y

[
lim

α→∞
Lprobit(αw, x, y)

]
≤ Ex,y [L(w, x, y)] = L(w) (10)

Combining (9) and (10) yields limn→∞ Lprobit(ŵn) ≤ L(w∗). Since for any w∗ this holds with
probability one, with probability one we also have limn→∞ Lprobit(ŵn) ≤ L∗. Finally we note
Lprobit(w) = Eε [L(w + ε)] ≥ L∗ which then gives theorem 1.
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4 Consistency of Ramp Loss

Now we consider the following ramp loss training equation.

ŵn = argmin
w

L̂n
ramp(w) +

γn

2n
||w||2 (11)

The main result of this paper is the following.

Theorem 3 (Consistency of Ramp Loss). For ŵn defined by (11), if the sequence γn/ ln2 n increases
without bound, and the sequence γn/(n lnn) converges to zero, then with probability one over the
draw of the infinite sample we have limn→∞ Lprobit((lnn)ŵn) = L∗.

As with theorem 1, theorem 3 is derived from a finite sample generalization bound. The bound
is derived from (6) by upper bounding L̂n

probit(w/σ) in terms of L̂n
ramp(w). From section 3 we

have that limσ→0 Lprobit(w/σ, x, y) ≤ L(w, x, y) ≤ Lramp(w, x, y). This can be converted to the
following lemma for finite σ where we recall that S is the set of augmented labels s = (y, z).
Lemma 1.

Lprobit

(w

σ
, x, y

)
≤ Lramp(w, x, y) + σ + σ

√
8 ln

|S|
σ

Proof. We first prove that for any σ > 0 we have

Lprobit

(w

σ
, x, y

)
≤ σ + max

s: m(s)≤M
L(y, s) (12)

where

m(s) = w>∆φ(s) ∆φ(s) = φ(x, ŝw(x))− φ(x, s) M = σ

√
8 ln

|S|
σ

.

To prove (12) we note that for m(s) > M we have the following where Pε[Φ(ε)] abbreviates
Eε

[
1Φ(ε)

]
.

Pε[ŝw+σε(x) = s] ≤ Pε[(w + σε)>∆φ(s) ≤ 0] = Pε

[
−ε>∆φ(s) ≥ m(s)/σ

]
≤ Pε∼N (0,1)

[
ε ≥ M

2σ

]
≤ exp

(
−M2

8σ2

)
=

σ

|S|

Eε [L(y, ŝw+σε(x))] ≤ Pε [∃s : m(s) > M ŝw+εσ(x) = s] + max
s:m(s)≤M

L(y, s)

≤ σ + max
s:m(s)≤M

L(y, s)

The following calculation shows that (12) implies the lemma.

Lprobit

(w

σ
, x, y

)
≤ σ + max

s: m(s)≤M
L(y, s)

≤ σ +
(

max
s: m(s)≤M

L(y, s)−m(s)
)

+ M

≤ σ +
(
max

s
L(y, s)−m(s)

)
+ M

= σ + Lramp(w, x, y) + M

Inserting lemma 1 into (6) we get the following.
Theorem 4. For λn > 1/2 we have that with probability at least 1− δ over the draw of the training
data the following holds simultaneously for all w and σ > 0.

Lprobit

(w

σ

)
≤ 1

1− 1
2λn

(
L̂n

ramp(w) + σ + σ

√
8 ln

|S|
σ

+ λn

(
||w||2
2σ2 + ln 1

δ

n

))
(13)
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To prove theorem 3 we now take σn = 1/ lnn and λn = γn/ ln2 n. We then have that ŵn is the
minimizer of the right hand side of (13). This observation yields the following for any unit-norm
vector w∗ and scalar α > 0 where we have set δ = 1/n2.

Lprobit((lnn)ŵn) ≤ 1
1− ln2 n

2γn

(
L̂ramp(αw∗) +

1 +
√

8 ln(|S| lnn)
lnn

+
γnα2

2n
+

2γn

n lnn

)
(14)

As in section 3, we use a Chernoff bound for the single vector w∗ and scalar α to bound L̂ramp(αw∗)
in terms of Lramp(αw∗) and then take the limit as n →∞ to get the following with probability one.

lim
n→∞

Lprobit((lnn)ŵn) ≤ Lramp(αw∗)

The remainder of the proof is the same in section 3 but where we now use limα→∞ Lramp(αw∗) =
L(w∗) whose proof we omit.

5 A Comparison of Convergence Rates

To compare the convergence rates implicit in (6) and (13) we note that in (13) we can optimize σ as a
function of other quantities in the bound.4 An approximately optimal value for σ is

(
λn||w||2/n

)1/3

which gives the following.

Lprobit

(w

σ

)
≤ 1

1− 1
2λn

(
L̂n

ramp(w) +
(

λn||w||2

n

)1/3
(

3
2

+

√
8 ln

|S|
σ

)
+

λn ln 1
δ

n

)
(15)

We have that (15) gives Õ
((
||ŵn||2/n

)1/3
)

as opposed to (6) which gives O
(
||ŵn||2/n

)
. This

suggests that while probit loss and ramp loss are both consistent, ramp loss may converge more
slowly.

6 Discussion and Open Problems

The contributions of this paper are a consistency theorem for latent structural probit loss and both
a generalization bound and a consistency theorem for latent structural ramp loss. These bounds
suggest that probit loss converges more rapidly. However, we have only proved upper bounds on
generalization loss and it remains possible that these upper bounds, while sufficient to show consis-
tency, are not accurate characterizations of the actual generalization loss. Finding more definitive
statements, such as matching lower bounds, remains an open problem.

The definition of ramp loss used here is not the only one possible. In particular we can consider the
following variant.

L′ramp(w, x, y) =
(
max

s
w>Φ(x, s)

)
−
(
max

s
w>φ(x, s)− L(y, s)

)
The subgradient update equation for L′ramp defines a “toward good” update as distinct from the
“away-from-bad” defined by Lramp. Relations (1) and (3) both hold for L′ramp as well as Lramp.
Experiments indicate that L′ramp performs somewhat better than Lramp when regularized with early
stopping. However it seems that it is not possible to prove a bound of the form of (15) for L′ramp. A
frustrating observation is that L′ramp(0, x, y) = 0. Finding a meaningful finite-sample statement for
L′ramp remains an open problem.

The isotropic Gaussian noise distribution used in the definition of Lprobit is not optimal. A uni-
formly tighter upper bound on generalization loss is achieved by optimizing the posterior in the
PAC-Bayesian theorem. Finding a practical more optimal use of the PAC-Bayesian theorem also
remains an open problem.

4In the consistency proof it was more convenient to set σ = 1/ln n which is plausibly nearly optimal
anyway.

7



References

[1] Olivier Catoni. PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical
Learning. Institute of Mathematical Statistics LECTURE NOTES MONOGRAPH SERIES,
2007.

[2] D. Chiang, K. Knight, and W. Wang. 11,001 new features for statistical machine translation.
In Proc. NAACL, 2009, 2009.

[3] Chuong B. Do, Quoc Le, Choon Hui Teo, Olivier Chapelle, and Alex Smola. Tighter bounds
for structured estimation. In nips, 2008.

[4] Pascal Germain, Alexandre Lacasse, Francois Laviolette, and Mario Marchand. Pac-bayesian
learning of linear classifiers. In ICML, 2009.

[5] Ross Girshick, Pedro Felzenszwalb, and David McAllester. Object detection with grammar
models. In NIPS, 2011.

[6] Joseph Keshet, David McAllester, and Tamir Hazan. Pac-bayesian approach for minimization
of phoneme error rate. In International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), 2011.

[7] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proceedings of the Eightneenth International
Conference on Machine Learning, pages 282–289, 2001.

[8] P. Liang, A. Bouchard-Ct, D. Klein, and B. Taskar. An end-to-end discriminative approach to
machine translation. In International Conference on Computational Linguistics and Associa-
tion for Computational Linguistics (COLING/ACL), 2006.

[9] David McAllester. Generalization bounds and consistency for structured labeling. In G. Bakir
nd T. Hofmann, B. Scholkopf, A. Smola, B. Taskar, and S. V. N. Vishwanathan, editors, Pre-
dicting Structured Data. MIT Press, 2007.

[10] David A. McAllester, Tamir Hazan, and Joseph Keshet. Direct loss minimization for structured
prediction. In Advances in Neural Information Processing Systems 24, 2010.

[11] A. Quattoni, S. Wang, L.P. Morency, M Collins, and T Darrell. Hidden conditional random
fields. PAMI, 29, 2007.

[12] R.Collobert, F.H.Sinz, J.Weston, and L.Bottou. Trading convexity for scalability. In ICML,
2006.

[13] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Advances in Neural
Information Processing Systems 17, 2003.

[14] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for
interdependent and structured output spaces. In Proceedings of the Twenty-First International
Conference on Machine Learning, 2004.

[15] Chun-Nam John Yu and T. Joachims. Learning structural svms with latent variables. In Inter-
national Conference on Machine Learning (ICML), 2009.

8


