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The task loss
The performance of keyword spotting system is 
measured by Receiver Operating Characteristics (ROC) 
curve.
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true positive = 
detected utterances with keywords

total utterances with keywords

false positive = 
detected utterances without keywords

total utterances without keywords



Dominant Paradigm
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Dominant Paradigm

• Common for LVCSR systems to have millions of 
free parameters 
– RWTH Gale Mandarin System ≈640M (Plahl et al. 09) 

• Not always appropriate to assume availability of 
large amounts of training data 
– Rapid development of systems for low-resource 

languages 
– Porting keyword spotting systems to new acoustic 

conditions or speech styles 



Articulatory feature-based pronunciation modeling

Discriminative learning by maximizing the AUC 
with large margin

Contributions
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(video source: Ken Stevens, MIT)
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Articulatory phonology
“pronunciation variations can be explained by 
asynchronization of the articulation”  
(Browman and Goldstein, 1992)
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Model and inference

t̄ ⇤ = f(x̄, k)
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How likely is AF in stream i at previous frame 
corresponds to AF stream j at current frame

Feature map II
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Maximizing area under ROC (AUC)

For every event (keyword)     define two sets of input 
signals (speech utterances):

X+
k

X�k

k



By definition of the area under the ROC:

Maximizing area under ROC (AUC)

(Keshet, Grangier and Bengio, 2009) 
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Implementation

• Iterative algorithm to solve the optimization 

problem efficiency on huge data (millions of 

examples) 

• Theorems support the maximization of AUC

(Keshet, Grangier and Bengio, 2009; Prabhavalkar, Keshet, Livescu and Fosler-
Lussier, 2012) 
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Utterances 500 1000 2500 5000

Training Data 0.8 hrs 1.5 hrs 3.7 hrs 7.4 hours

Experiments
• Constructed four corpora containing 

500-5000 utterances respectively by 
randomly selecting utterances from 
Switchboard 

• Development set (40 terms) and Test set 
(60 terms)  
– 20 positive and negative sentences each



Experiments
• Creation of “positive” and “negative” examples from 

training data 
– Each word with at least 5 phonemes in 

pronunciation chosen as “positive example” 
– Randomly selected utterance not containing 

word from training data as corresponding 
“negative example”

Utterances 500 1000 2500 5000

Positive 
Examples

1538 2876 7245 14570



Experiments

• Enforce synchrony for Lip features (L); Tongue 
features (T); combination of Glottis and velum (G) 

• Allow at most one state of asynchrony between 
streams

Articulatory 
Stream

State 
Space 
Size

Lips (L) 8

Tongue (T) 25

Glottis/Velum (G) 5



Experiments

• MLPs trained on Switchboard Transcription Project 
(STP) (Greenberg et al. 96) data to predict phones 
and L, T, G labels 

• “Tandem” feature extraction: projected computed 
phone and L, T, G log posteriors on to top 39 
principal components using PCA 

– “Tandem” features used as acoustic features in 
baseline monophone/triphone GMM-HMM 
keyword-filler and discriminative systems



Results: HMM, Disc-Phone

AUC performance
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Effect of Asynchrony

AUC Performance
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Combining Phone, AF Models

AUC Performance

500 1000 2500 5000
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Conclusions
• Discriminative systems outperform the 

HMM systems by large margins 

• AF-based system outperform phone-
based systems in very-low-resource 
conditions 

– System appears to hypothesize greater 
asynchrony for words with pronunciation 
variation 

• In current work, we are exploring 
techniques for optimizing ATWV instead 
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