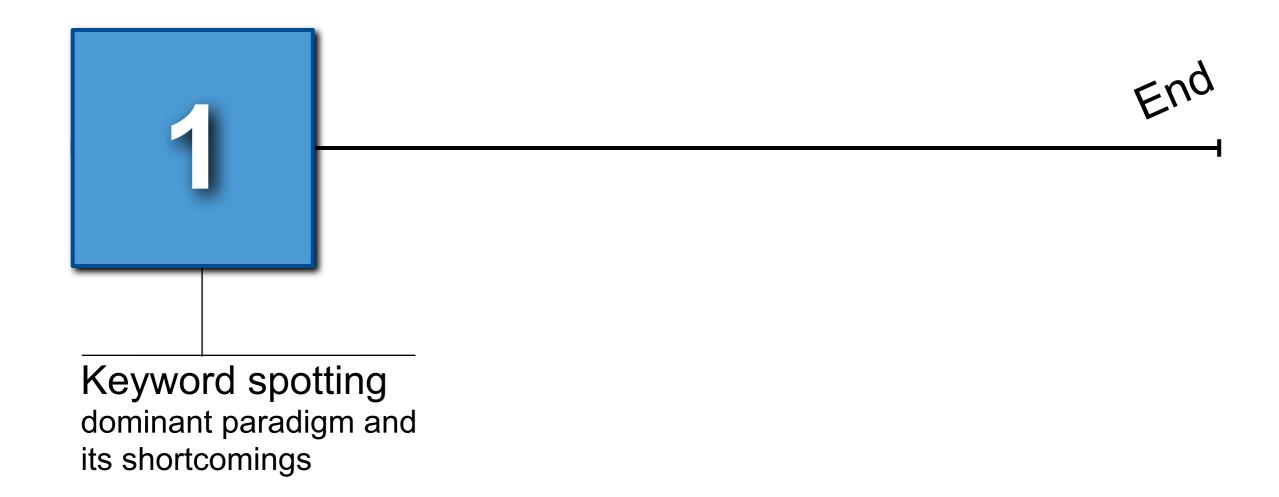
Discriminative Keyword
Spotting with Limited Data

Joseph Keshet

Department of Computer Science Bar-Ilan University

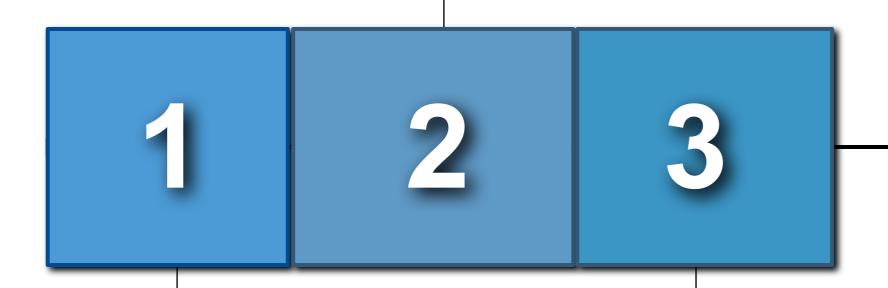




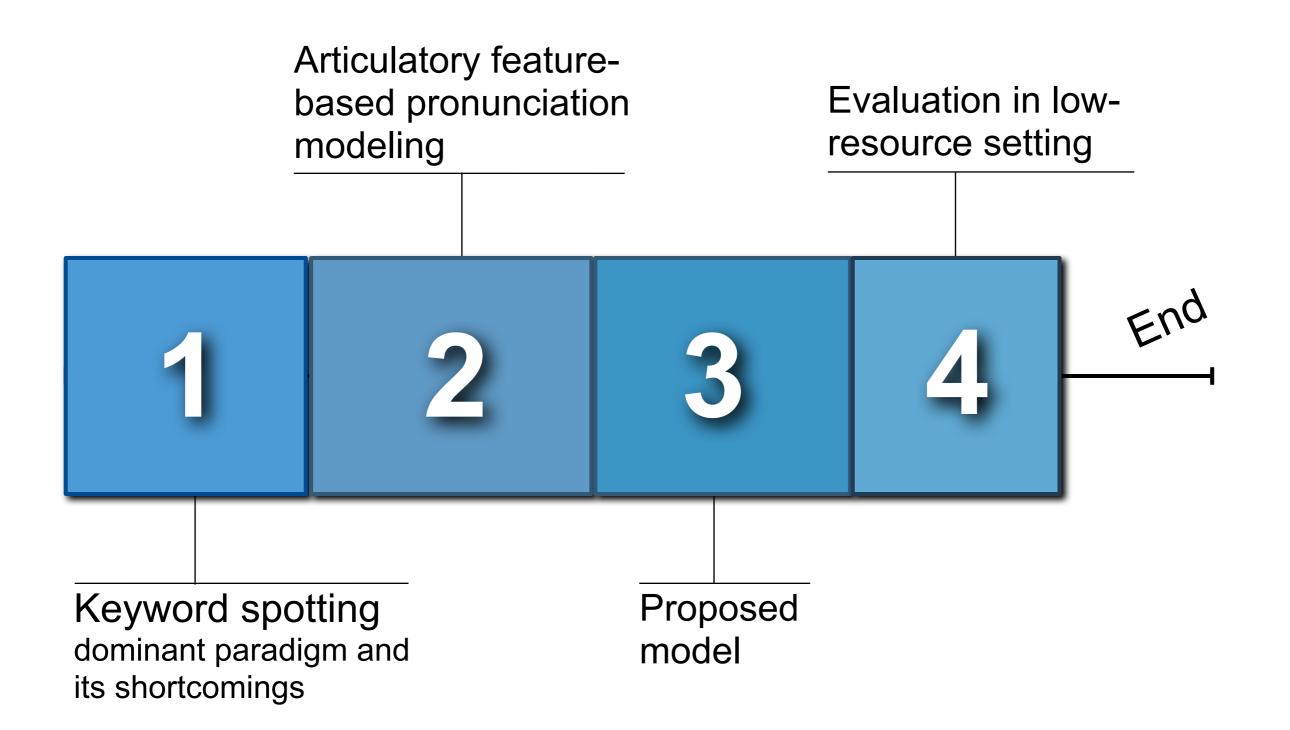
Articulatory featurebased pronunciation modeling

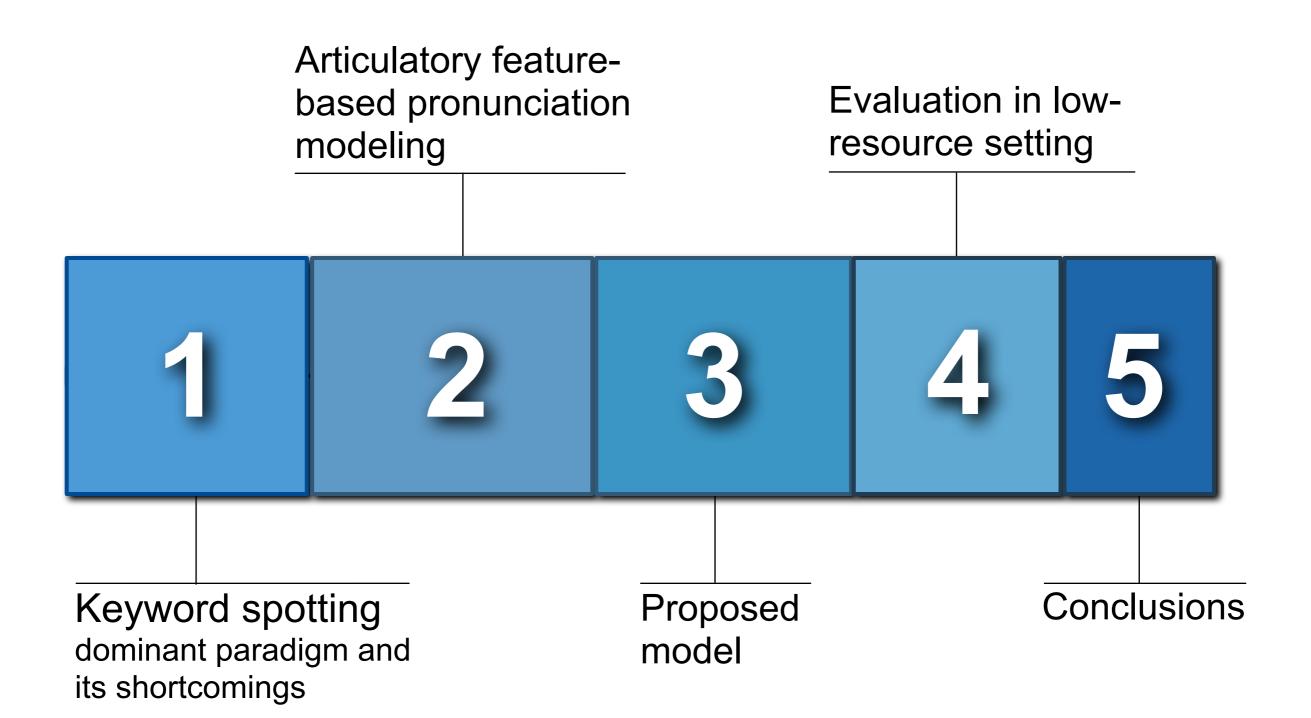
Keyword spotting dominant paradigm and its shortcomings

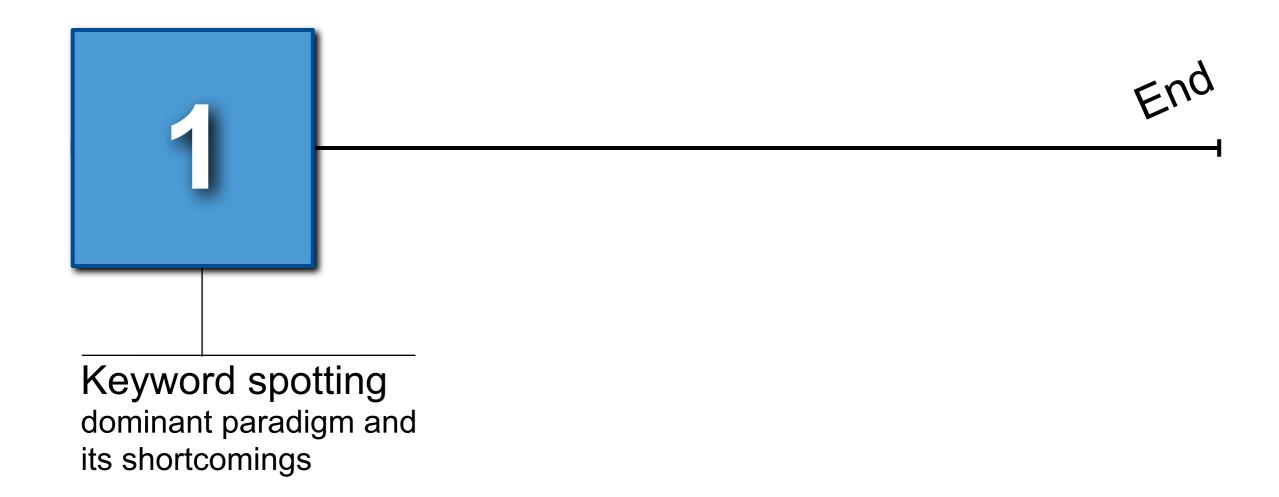
Articulatory featurebased pronunciation modeling

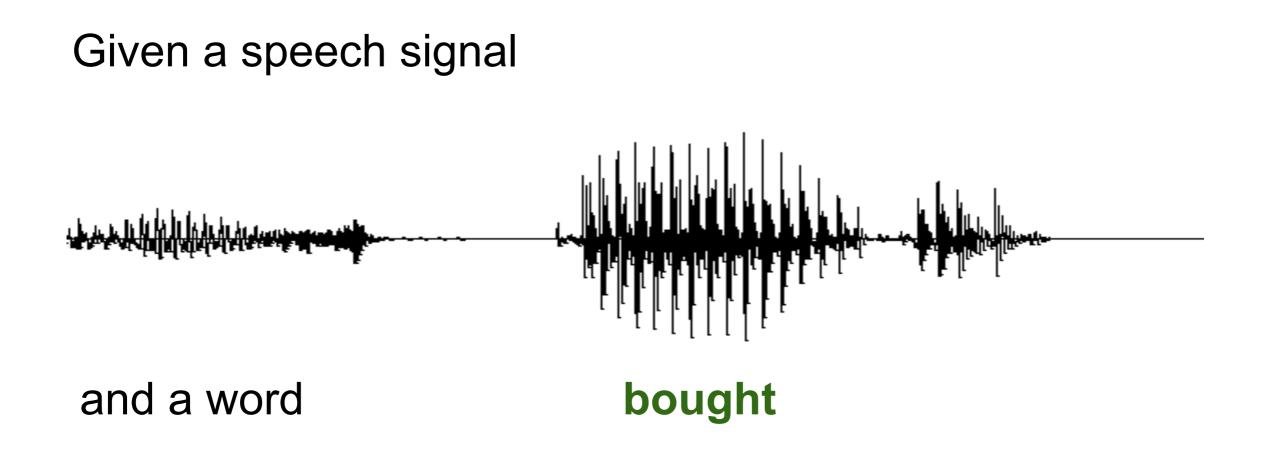


Keyword spotting dominant paradigm and its shortcomings Proposed model

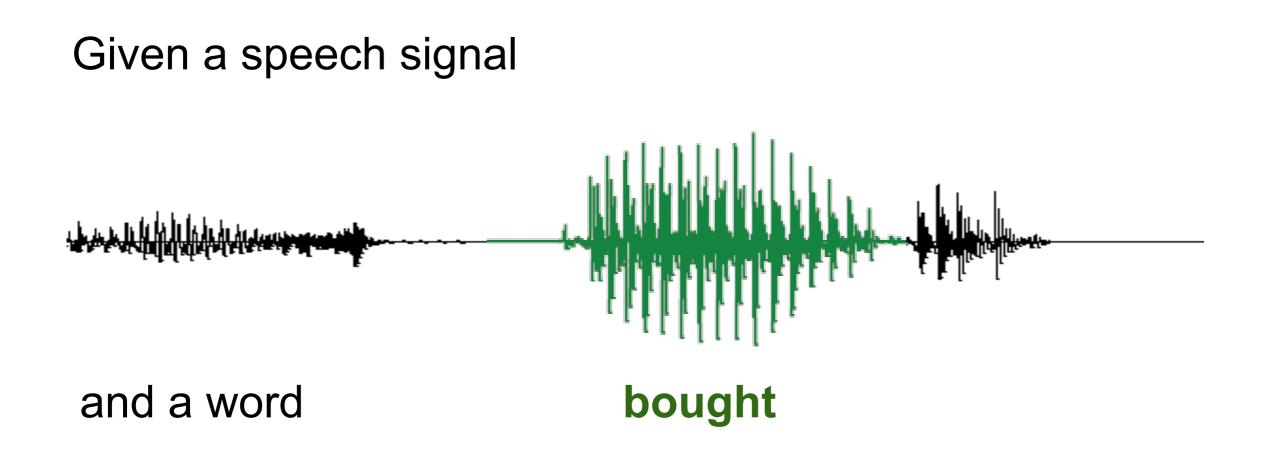








<u>Goal</u>: find if the word is uttered in the speech signal and where



<u>Goal</u>: find if the word is uttered in the speech signal and where

The task loss

The performance of keyword spotting system is measured by <u>Receiver Operating Characteristics</u> (ROC) curve.

true positive =

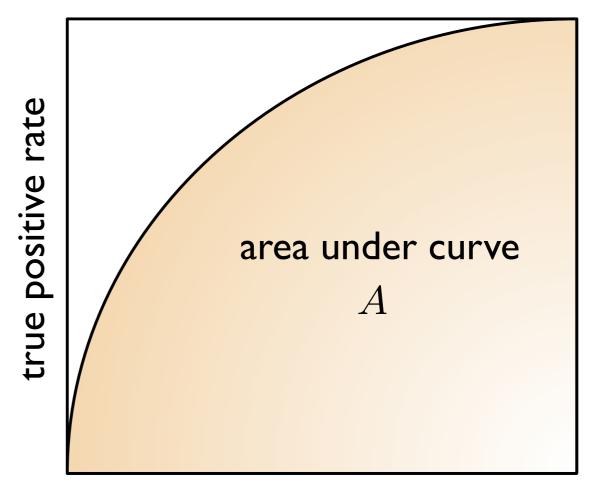
detected utterances with keywords

total utterances with keywords

false positive =

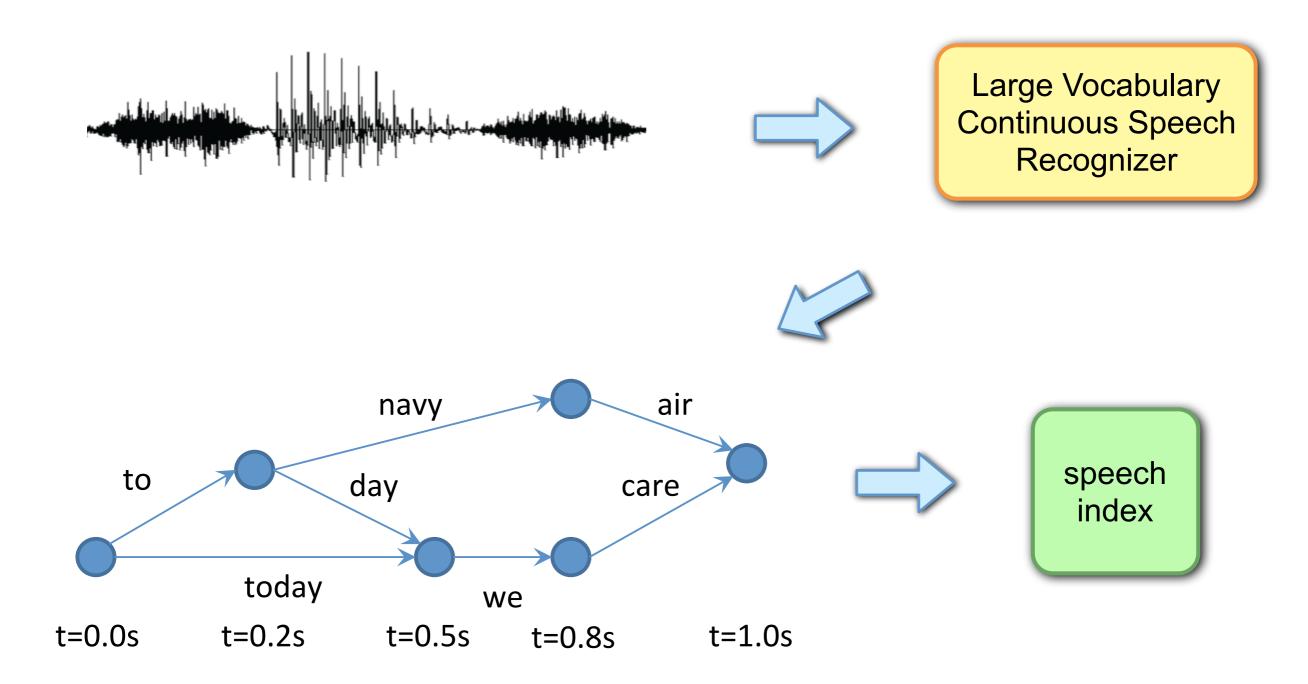
detected utterances without keywords

total utterances without keywords



false positive rate

Dominant Paradigm



Dominant Paradigm

 Common for LVCSR systems to have millions of free parameters

- RWTH Gale Mandarin System ≈640M (Plahl et al. 09)

- Not always appropriate to assume availability of large amounts of training data
 - Rapid development of systems for low-resource languages
 - Porting keyword spotting systems to new acoustic conditions or speech styles

Articulatory feature-based pronunciation modeling

Discriminative learning by maximizing the AUC with large margin

Articulatory featurebased pronunciation modeling

Keyword spotting dominant paradigm and its shortcomings

What are articulatory features?

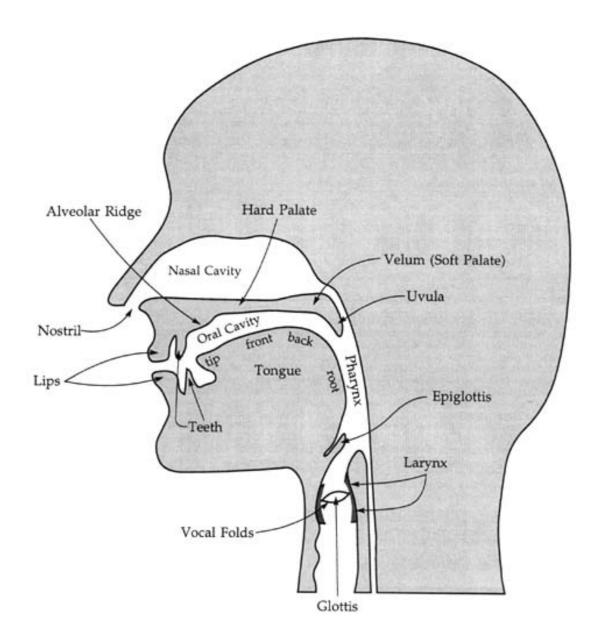
(video source: Ken Stevens, MIT)

What are articulatory features?

(video source: Ken Stevens, MIT)

Articulatory phonology

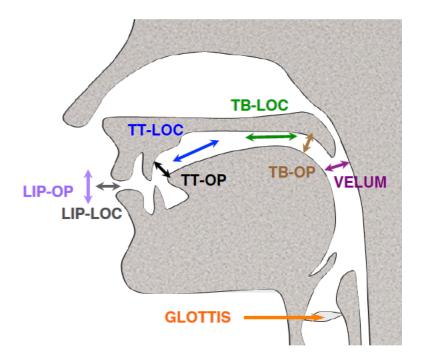
"pronunciation variations can be explained by asynchronization of the articulation" (Browman and Goldstein, 1992)



Articulatory phonology

articulatory features (AF)

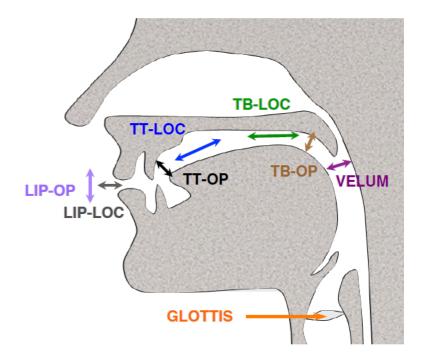
VEL	non-nasal	non-nasal	nasal	non-nasal			
GLO	wide	critical critical		wide			
ТВ	uvular/medium	palatal/medium	uvular/medium	uvular/medium			
TT	alveolar/ critical	alveolar/ medium	alveolar/closed	alveolar/critical			
LIPS	wide/labial	wide/ labial	wide/labial	wide/labial			
Phone	S	eh	n	S			



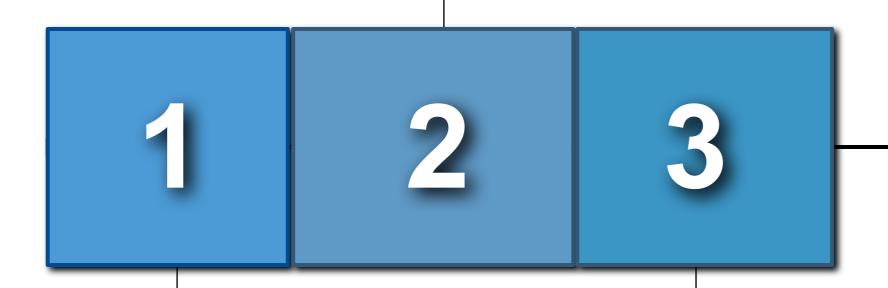
Articulatory phonology

articulatory features (AF)

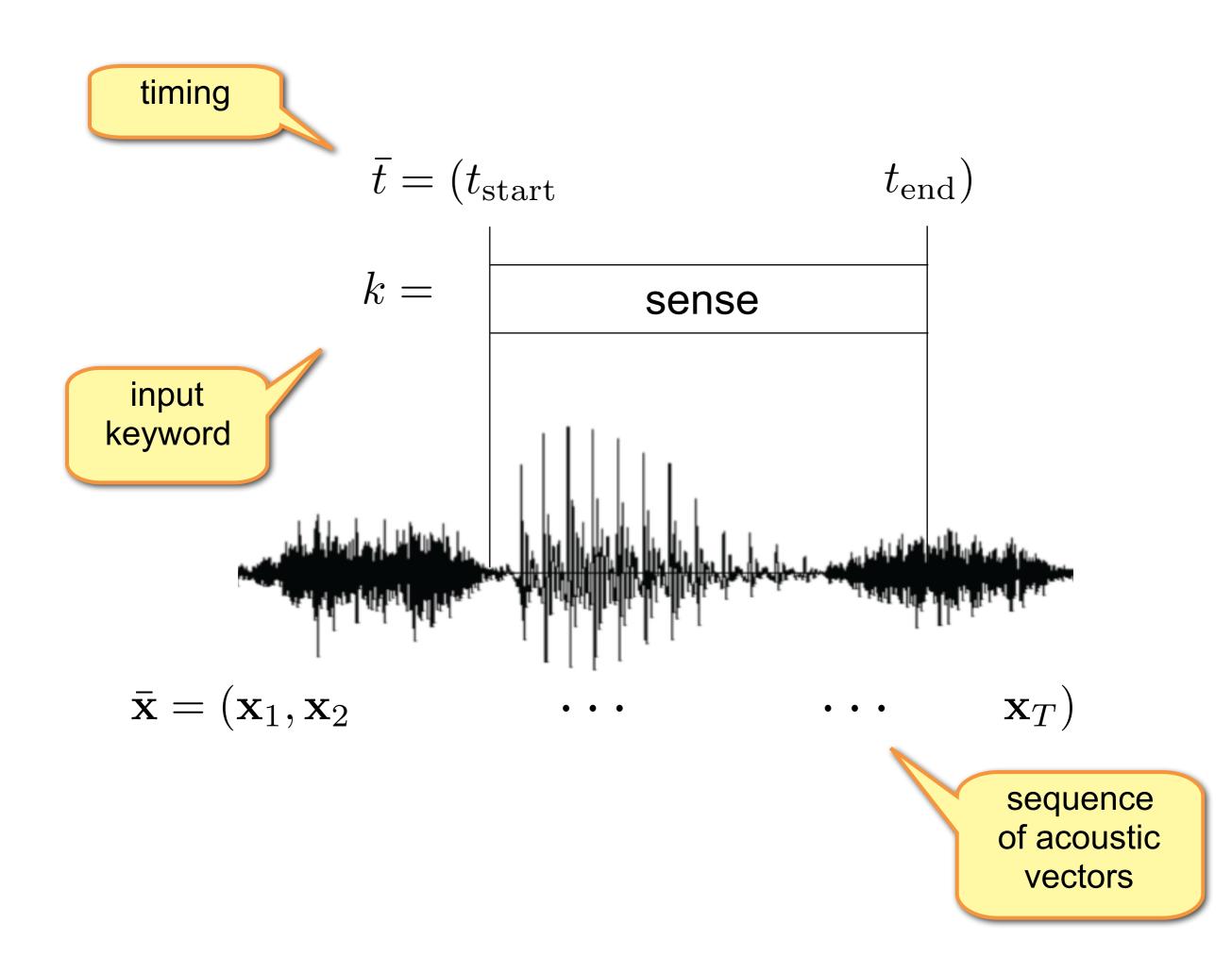
VEL	non-nasal	non-nasal	nasal		non-nasal		
GLO	wide	critical	critical		wide		
ТВ	uvular/medium	palatal/medium ເ		uvular/medium		uvular/medium	
TT	alveolar/ critical	alveolar/ medium		alveolar/closed		alveolar/critical	
LIPS	wide/labial	wide/ labial		wide/labial		wide/labial	
Phone	S	eh ⁿ		n	t	S	

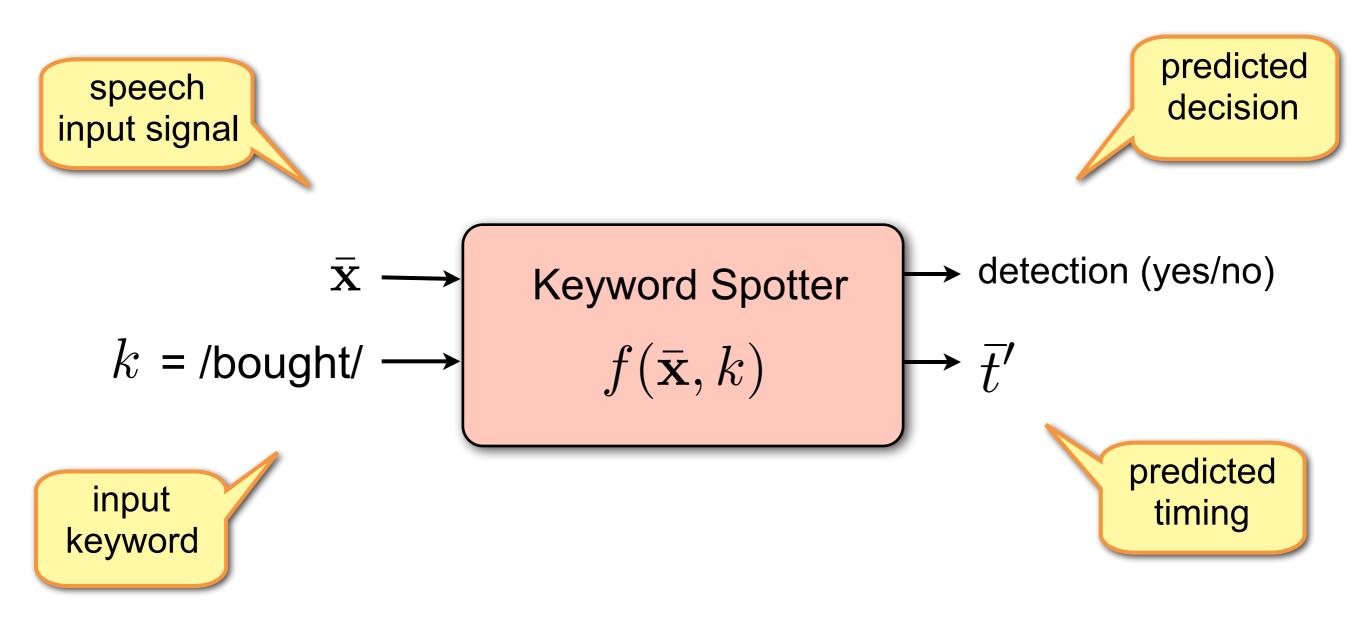


Articulatory featurebased pronunciation modeling



Keyword spotting dominant paradigm and its shortcomings Proposed model





$$\bar{t}^* = f(\bar{\mathbf{x}}, k)$$

$$\bar{t}^* = f(\bar{\mathbf{x}}, k)$$

$$= \arg \max_{\bar{t}} f(\bar{\mathbf{x}}, k, \bar{t})$$

$$\bar{t}^* = f(\bar{\mathbf{x}}, k)$$

$$= \arg \max_{\bar{t}} f(\bar{\mathbf{x}}, k, \bar{t})$$

$$= \arg \max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$$

$$\bar{t}^* = f(\bar{\mathbf{x}}, k)$$

$$= \arg \max_{\bar{t}} f(\bar{\mathbf{x}}, k, \bar{t})$$

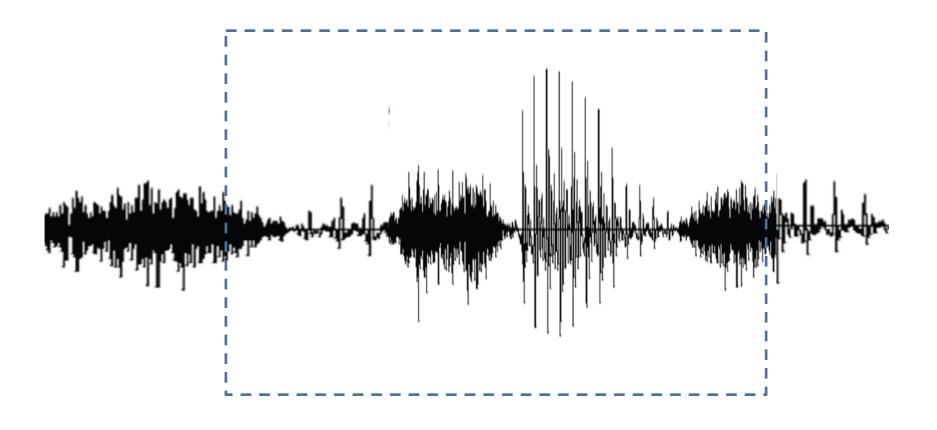
$$= \arg \max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$$

$$\underbrace{\text{weight}}_{\text{vector}} \underbrace{\text{weight}}_{\mathbf{w} \in \mathbb{R}^n} \underbrace{\text{feature}}_{\text{map}}$$

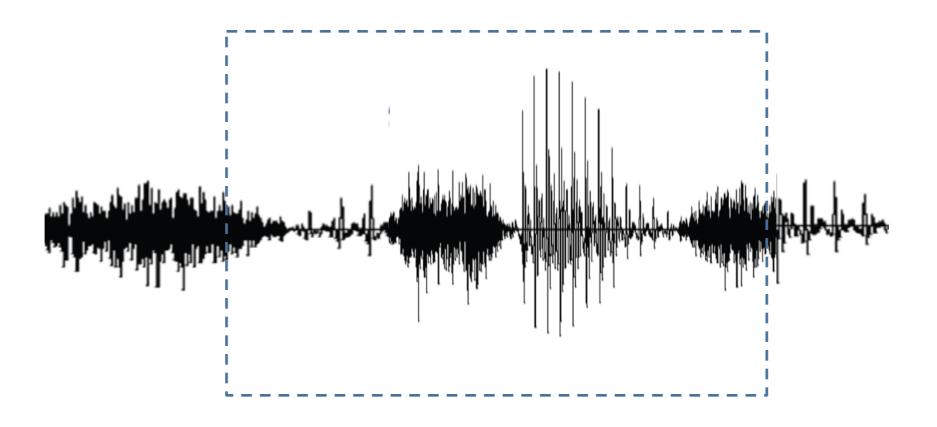
$$\bar{t}^* = f(\bar{\mathbf{x}}, k)$$

$$= \arg \max_{\bar{t}} f(\bar{\mathbf{x}}, k, \bar{t})$$

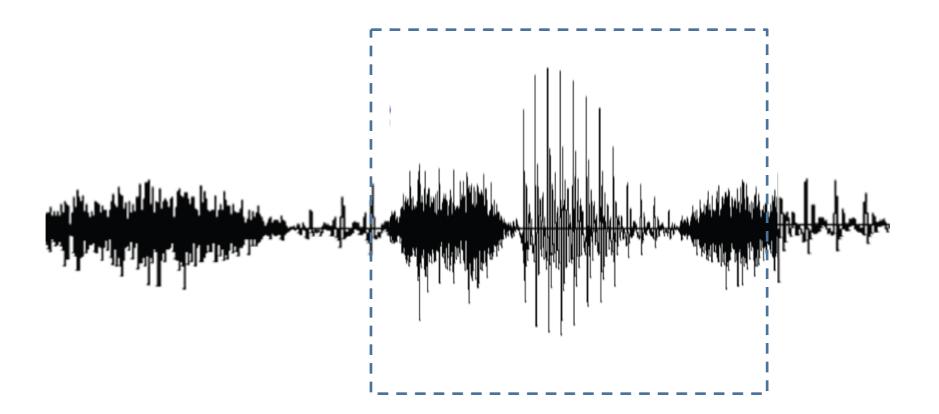
$$= \arg \max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$$



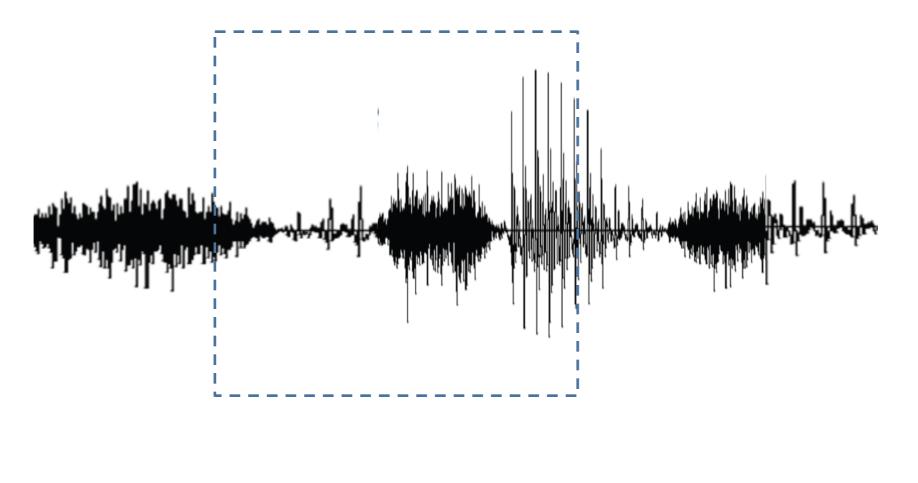
 $\bar{t}^* = \arg\max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$



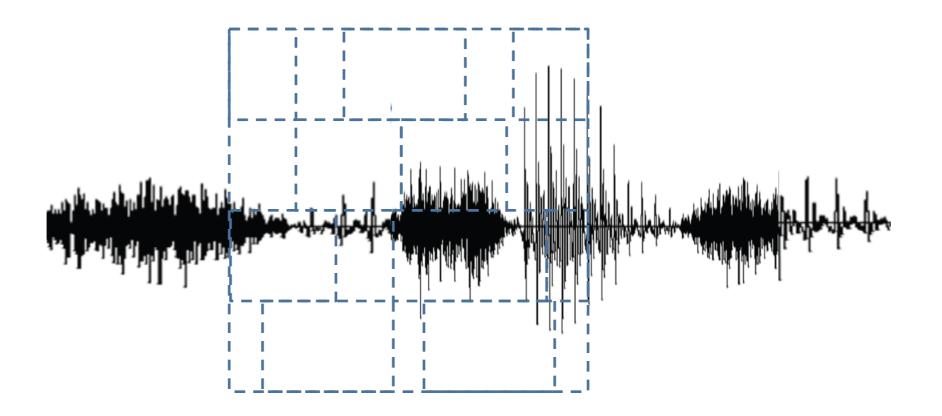
 $\bar{t}^* = \arg\max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$



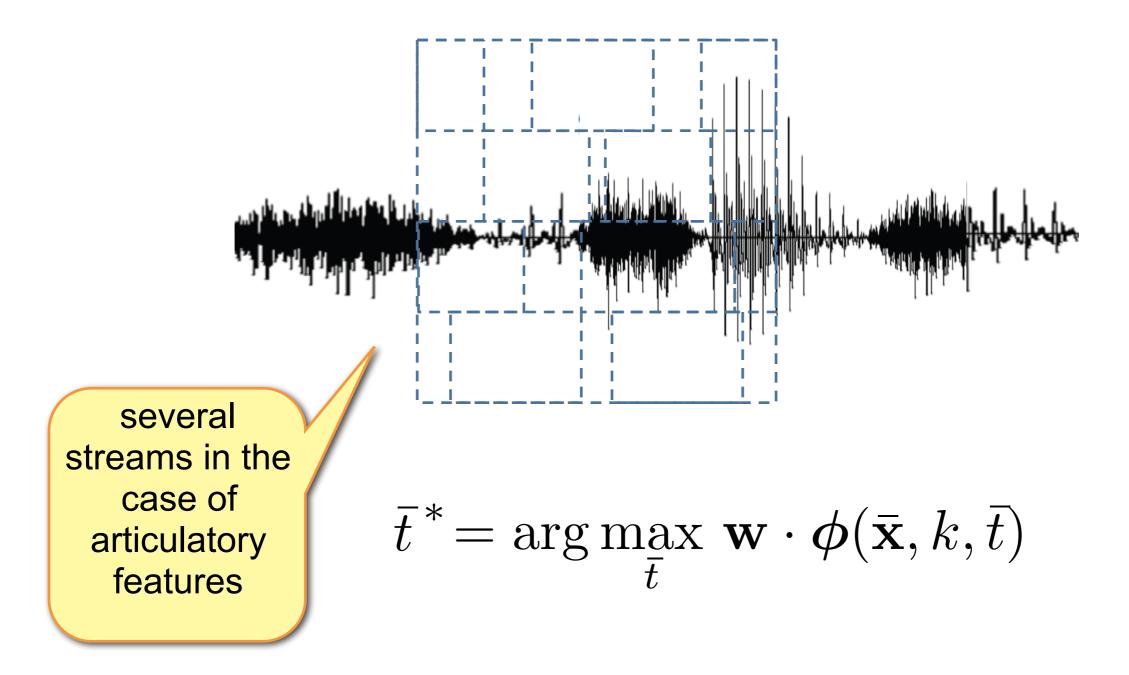
 $\bar{t}^* = \arg\max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$

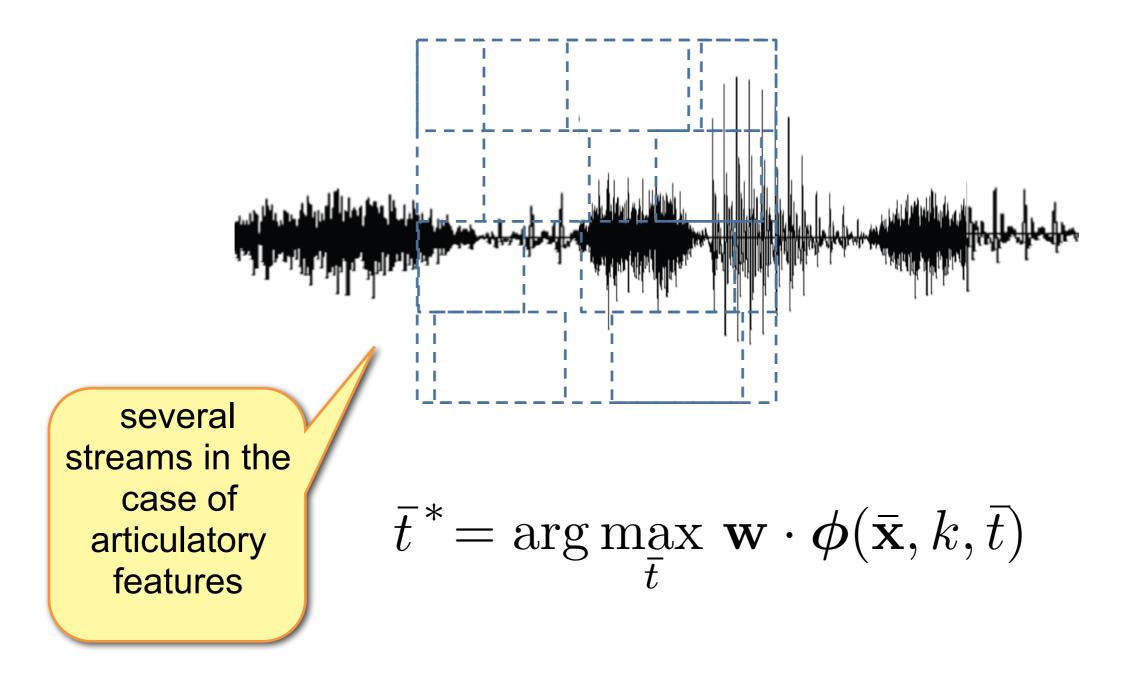


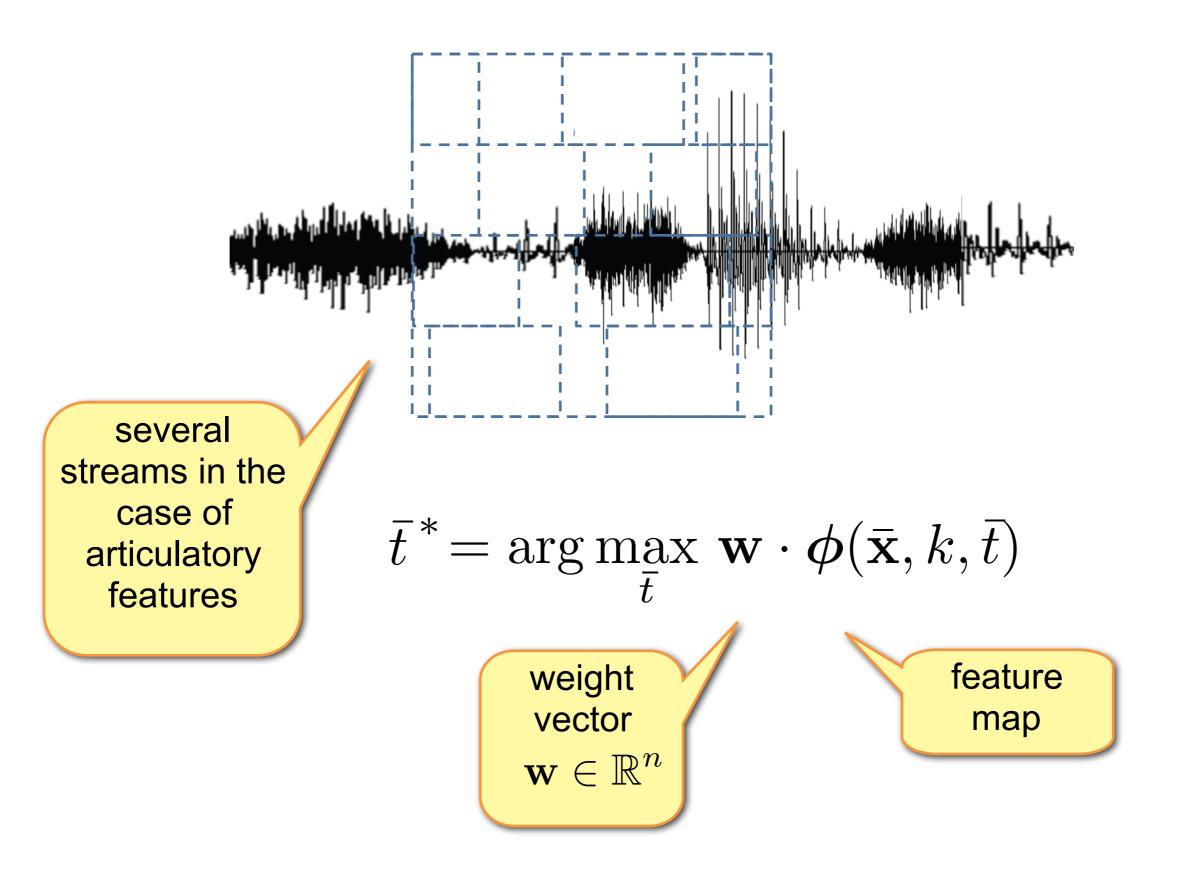
$$\bar{t}^* = \arg\max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$$



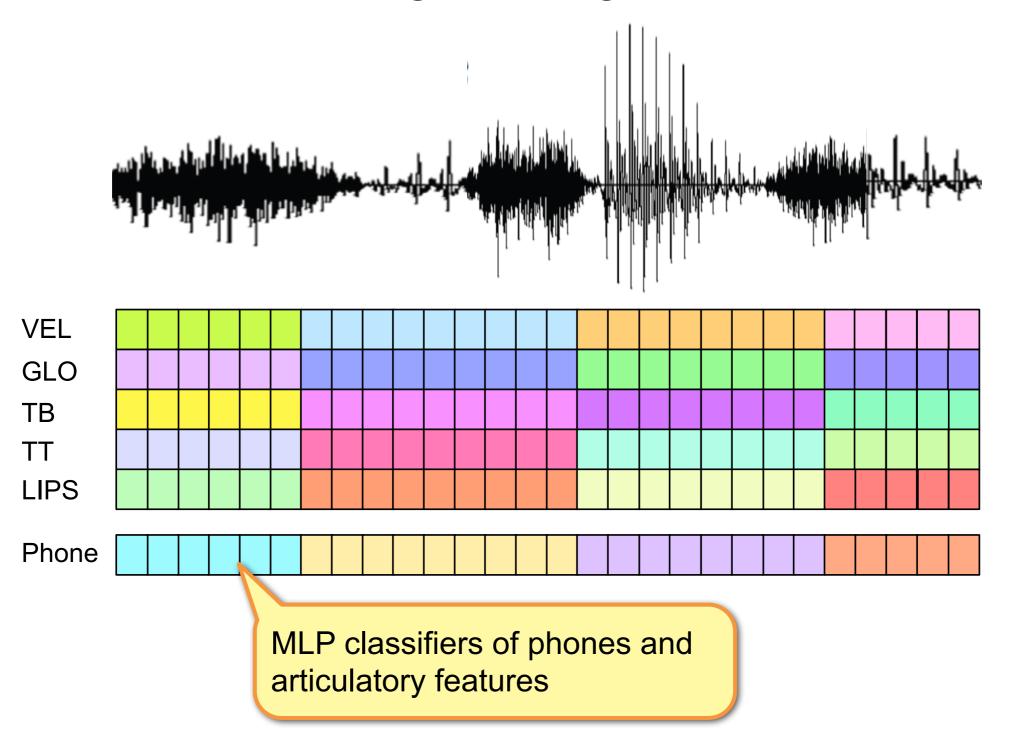
 $\bar{t}^* = \arg\max_{\bar{t}} \mathbf{w} \cdot \boldsymbol{\phi}(\bar{\mathbf{x}}, k, \bar{t})$



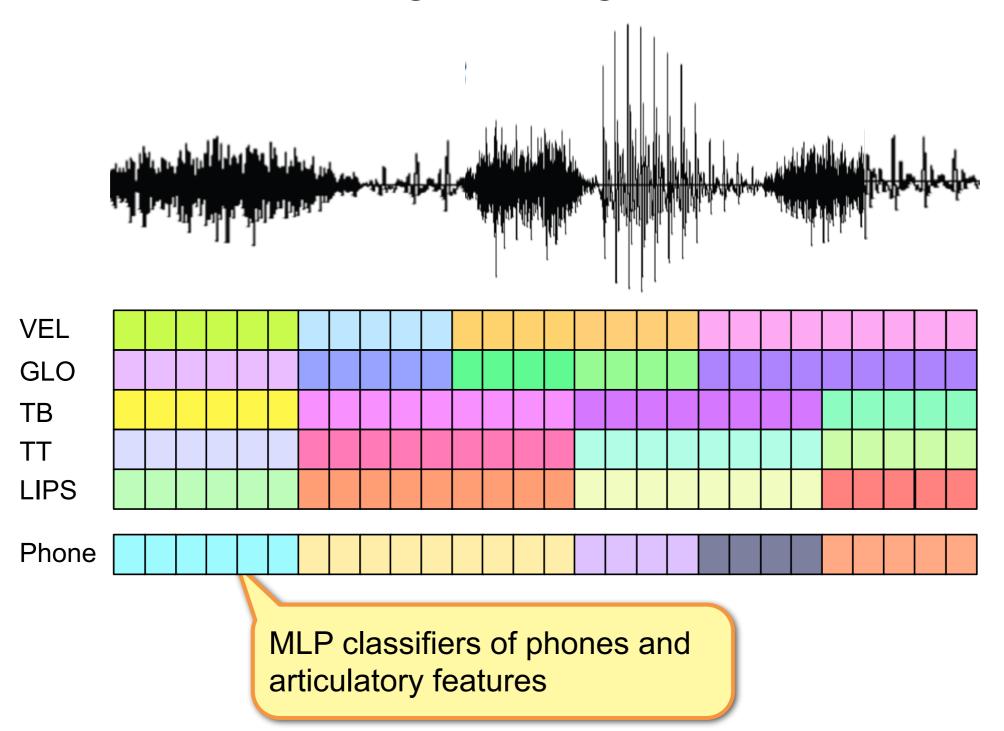




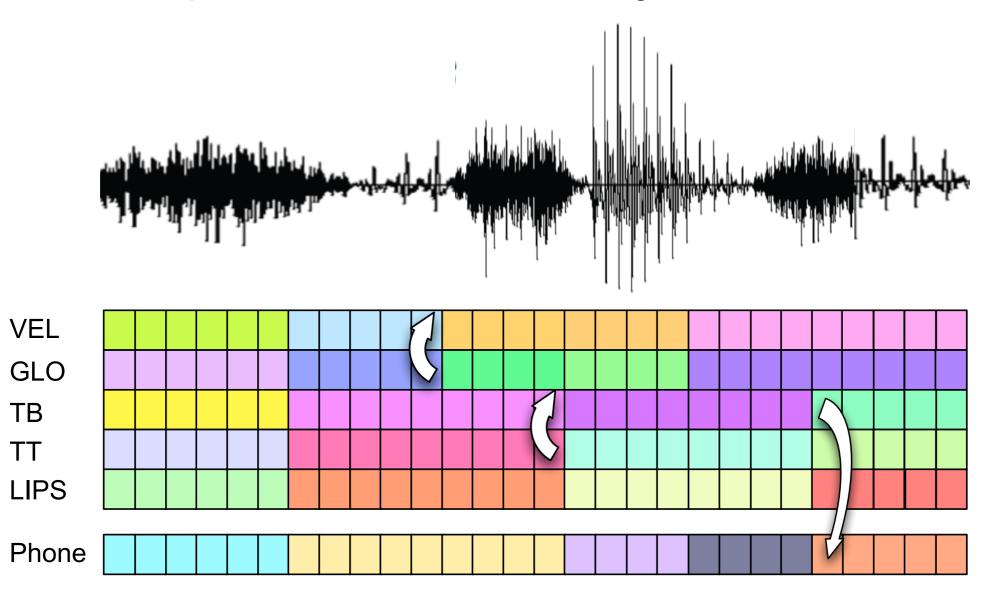
How likely is current frame to correspond to each of the AFs given segmentation?



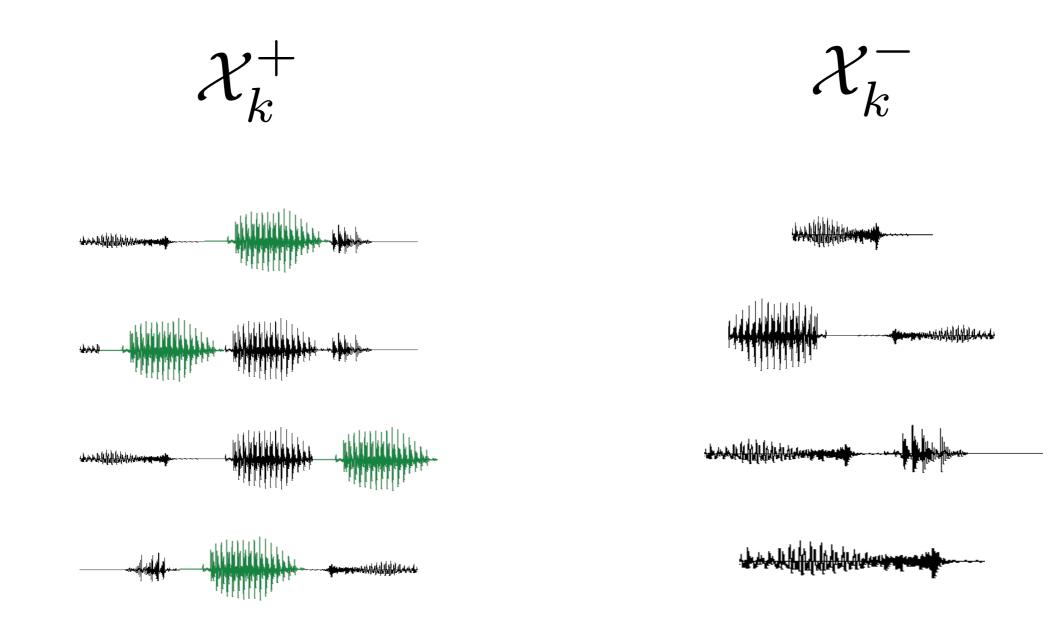
How likely is current frame to correspond to each of the AFs given segmentation?



How likely is AF in stream i at previous frame corresponds to AF stream j at current frame



For every event (keyword) k define two sets of input signals (speech utterances):



By definition of the area under the ROC:

$$A = \mathbb{P}\left[\max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}^+, k, \bar{t}) > \max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}^-, k, \bar{t})\right]$$

(Keshet, Grangier and Bengio, 2009)

By definition of the area under the ROC:

$$A = \mathbb{P}\left[\max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}^+, k, \bar{t}) > \max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}^-, k, \bar{t})\right]$$

(Keshet, Grangier and Bengio, 2009)

By definition of the area under the ROC:

$$A = \mathbb{P}\left[\max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}^+, k, \bar{t}) > \max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}^-, k, \bar{t})\right]$$

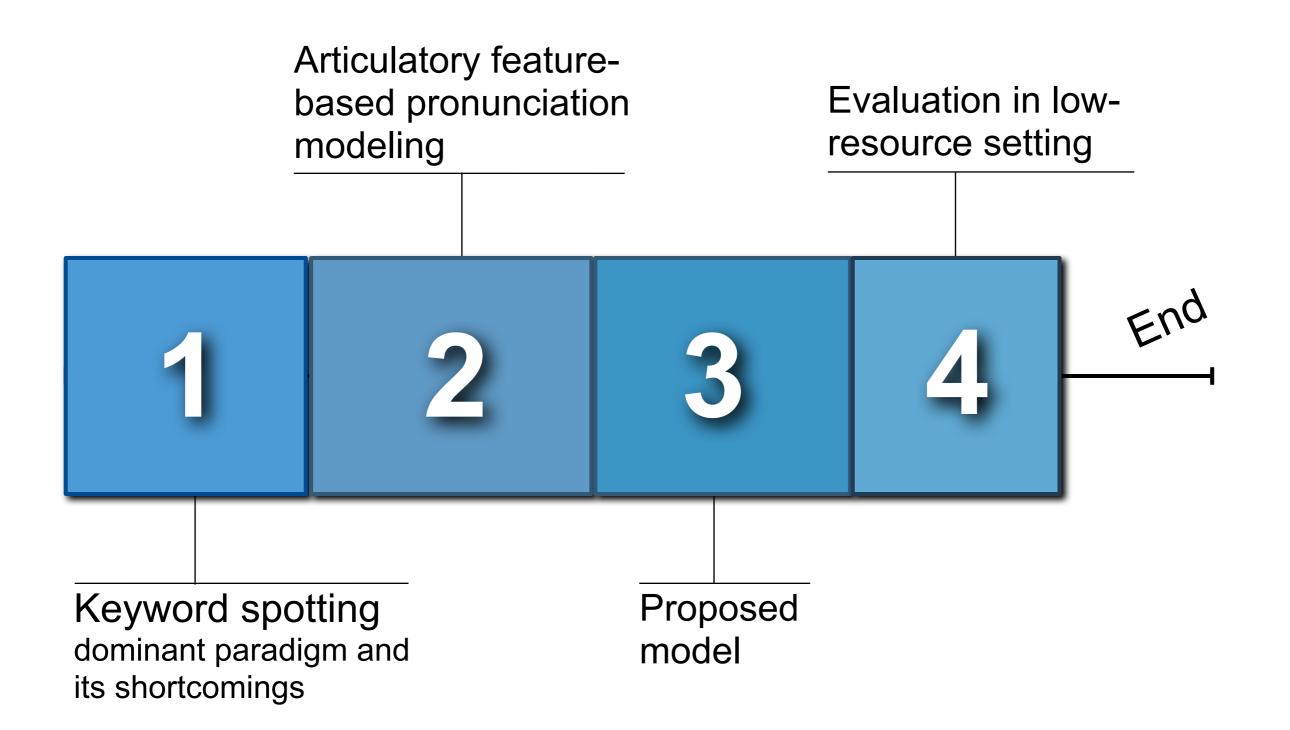
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^m \left[1 - \max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}_i^+, k_i, \bar{t}) + \max_{\bar{t}} f_{\mathbf{w}}(\bar{\mathbf{x}}_i^-, k_i, \bar{t}) \right]_+ + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

(Keshet, Grangier and Bengio, 2009)

Implementation

- Iterative algorithm to solve the optimization problem efficiency on huge data (millions of examples)
- Theorems support the maximization of AUC

(Keshet, Grangier and Bengio, 2009; Prabhavalkar, Keshet, Livescu and Fosler-Lussier, 2012)



Experiments

- Constructed four corpora containing 500-5000 utterances respectively by randomly selecting utterances from Switchboard
- Development set (40 terms) and Test set (60 terms)

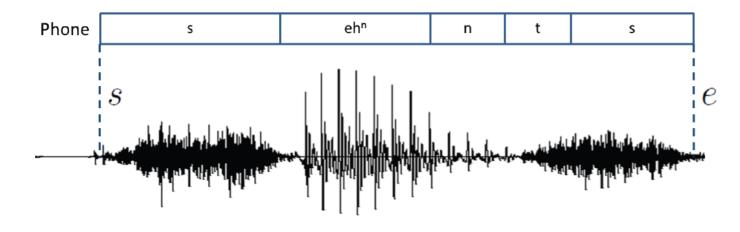
-20 positive and negative sentences each

Utterances	500	1000	2500	5000
Training Data	0.8 hrs	1.5 hrs	3.7 hrs	7.4 hours

- Creation of "positive" and "negative" examples from training data
 - Each word with at least 5 phonemes in pronunciation chosen as "positive example"
 - Randomly selected utterance not containing word from training data as corresponding "negative example"

Utterances	500	1000	2500	5000
Positive Examples	1538	2876	7245	14570

VEL	non-nasal (σ_1^1)	$\stackrel{\text{non-nasal}}{(\sigma_2^1)}$	nasal (σ_3^1)		non-nasal (σ_4^1)	
	-			-		
GLO	wide	critical	critical			wide
тв	uvular/n	nedium	palatal/medium	uvular/medium		uvular/medium
тт	alveolar/ critical		alveolar/ medium	alveolar/closed		alveolar/critical
LIPS	wide/labial		wide/ labial	wide/labial		wide/labial



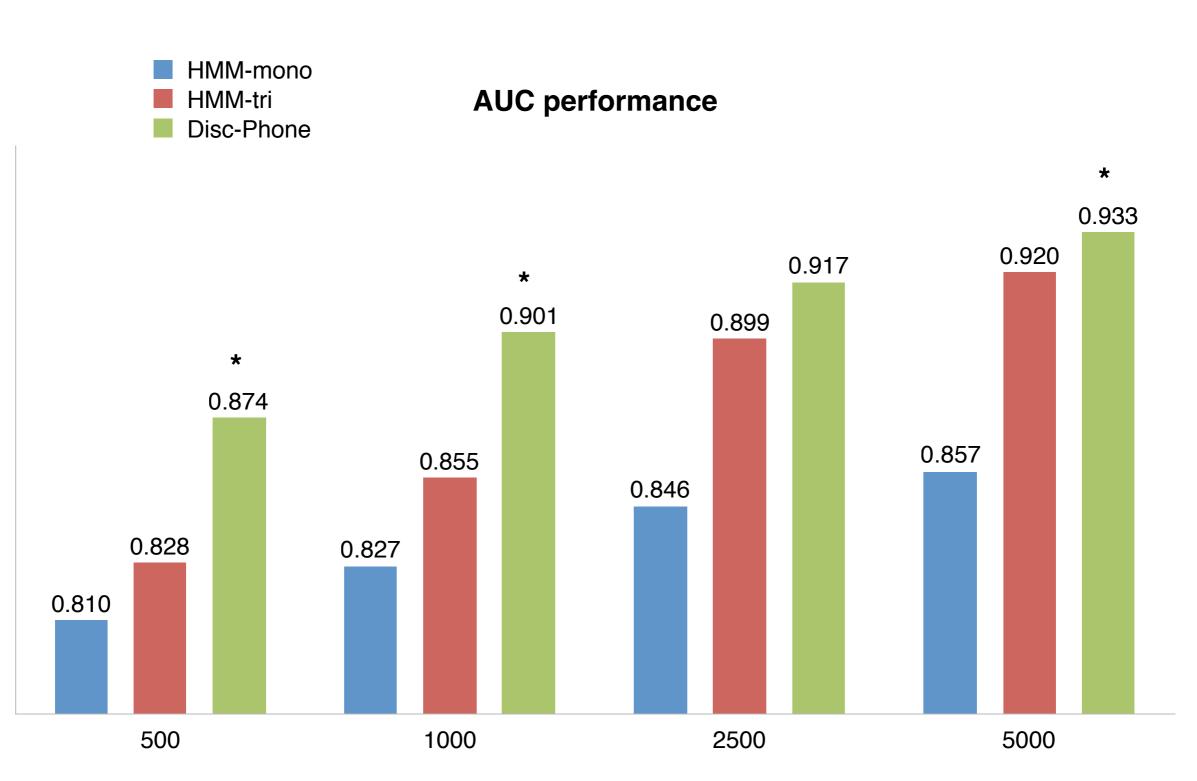
Articulatory Stream	State Space Size		
Lips (L)	8		
Tongue (T)	25		
Glottis/Velum (G)	5		

- Enforce synchrony for Lip features (L); Tongue features (T); combination of Glottis and velum (G)
- Allow at most one state of asynchrony between streams

 MLPs trained on Switchboard Transcription Project (STP) (Greenberg et al. 96) data to predict phones and L, T, G labels

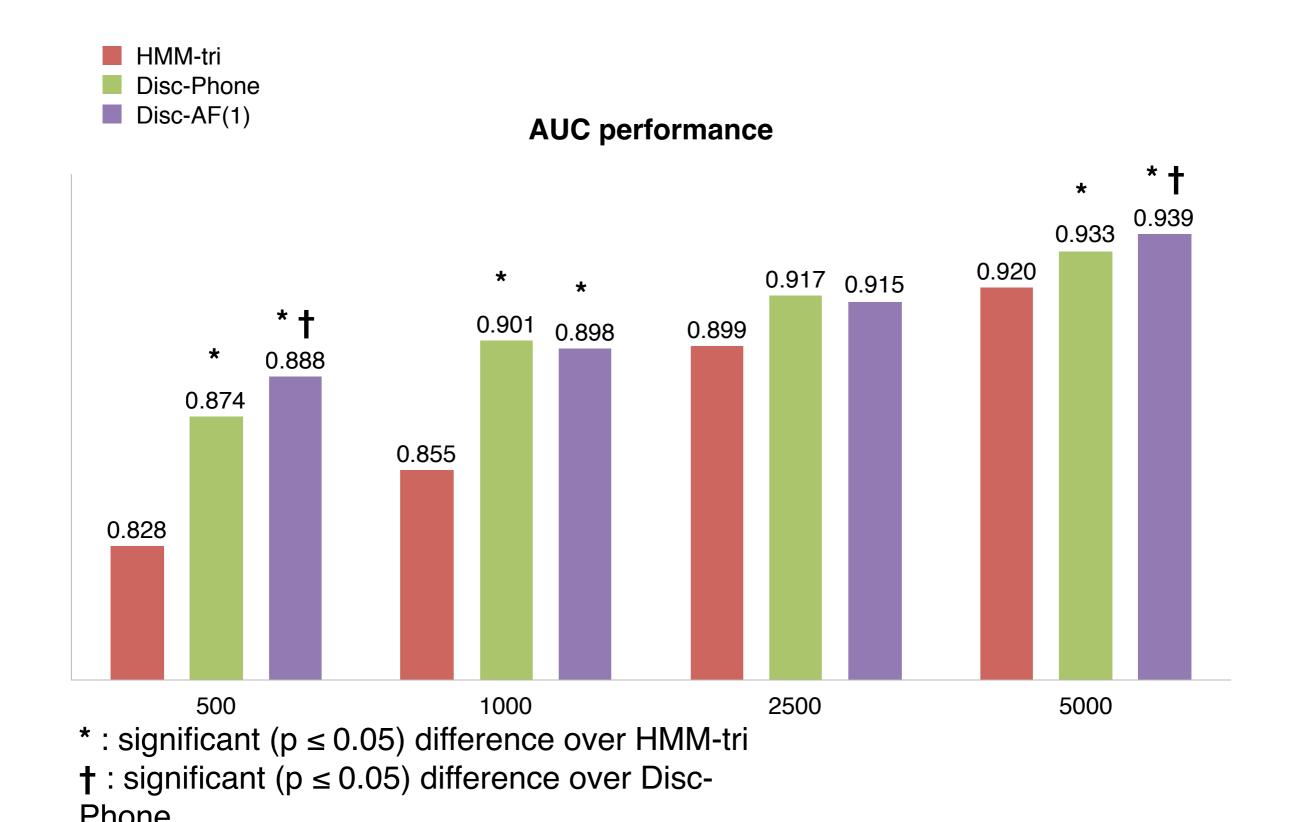
- "Tandem" feature extraction: projected computed phone and L, T, G log posteriors on to top 39 principal components using PCA
 - "Tandem" features used as acoustic features in baseline monophone/triphone GMM-HMM keyword-filler and discriminative systems

Results: HMM, Disc-Phone

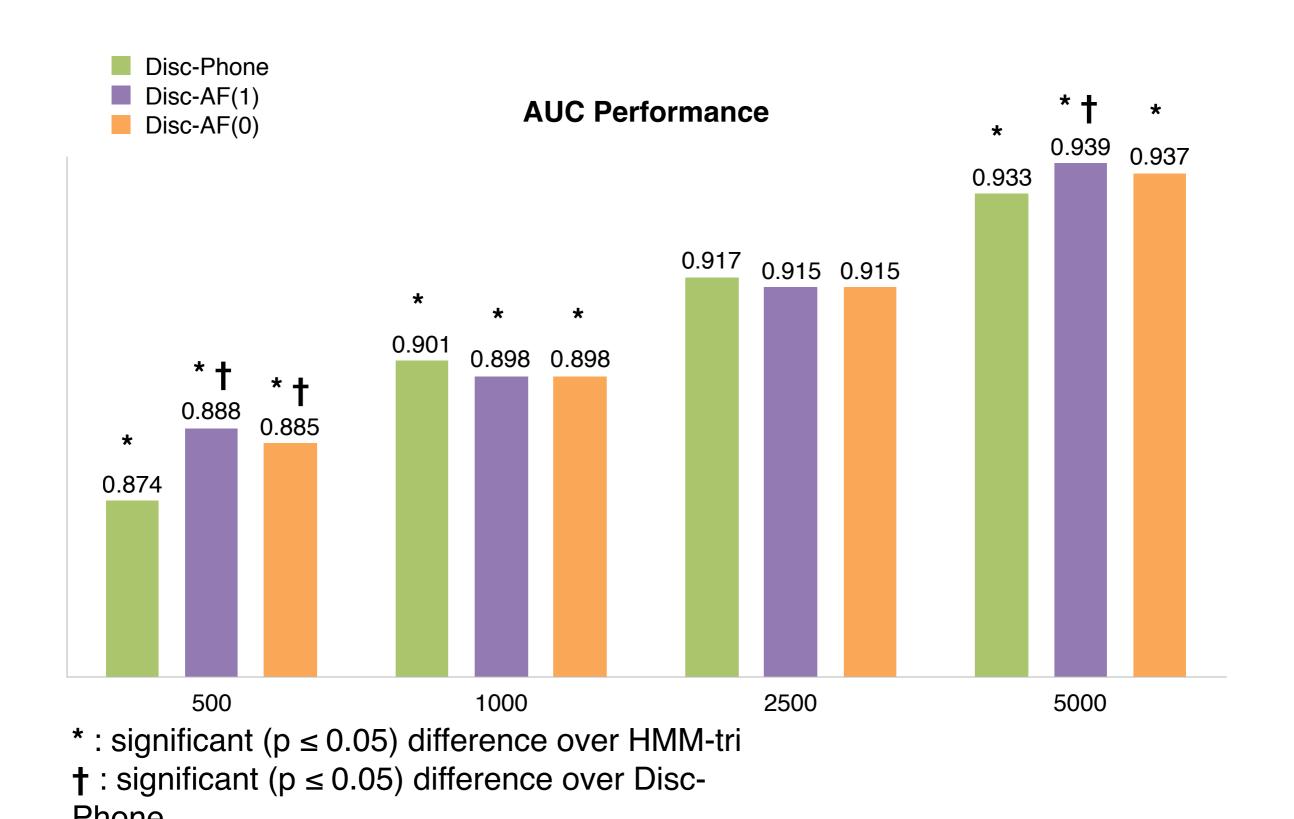


* : significant ($p \le 0.05$) difference over HMM-tri

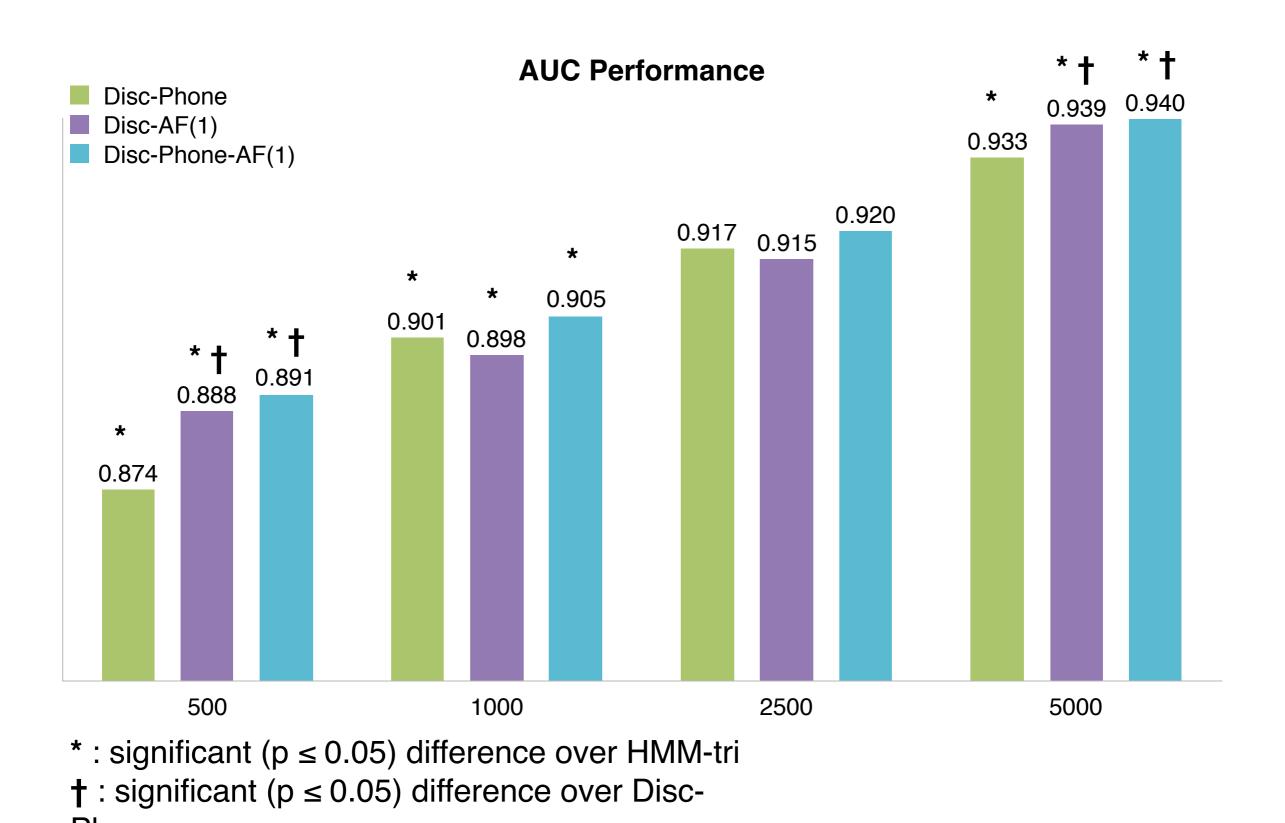
Results: HMM, Disc-Phone, Disc-AF



Effect of Asynchrony



Combining Phone, AF Models



- Discriminative systems outperform the HMM systems by large margins
- AF-based system outperform phonebased systems in very-low-resource conditions
 - System appears to hypothesize greater asynchrony for words with pronunciation variation
- In current work, we are exploring techniques for optimizing ATWV instead

Acknowledgement

articulatory phonology modeling

discriminative keyword spotting

