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Previous Work

Learn alternative pronunciations
[Holter and Svendsen, 1999]

Learn phonetic transformations
[Riley et al., 1999, Hazen et al., 2005, Hutchinson and Droppo, 2011]

Learn articulatory pronunciation models
[Livescu and Glass, 2004, Jyothi et al., 2011]

Learn alternative pronunciations with MCE
[Vinyals et al., 2009, Korkmazskiy and Juang, 1997]
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Contribution

e Propose a discriminative framework for pronunciation modeling
o Incorporate a large number of complex features

e Use large-margin learning
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Lexical Access: Definition

[praaliy] — 7
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Lexical Access: Previous work

Experiments on a subset of Switchboard.

’ Model ‘ Error Rate ‘

lexicon lookup 59.3%
(from [Livescu, 2005])
lexicon + Levenshtein distance | 41.8%
articulatory based DBN 29.1%
[Jyothi et al., 2011]
Our approach 15.2%
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Lexical Access: Goal

f
[praaliy] — probably
p P w eV

set of sub-word units

set of all sequences of sub-word units
vocabulary

word

sequence of sub-word units
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Model

We model f : P* =V as

w* = f(p) = argmax 6 ' ¢(p, w),
wey

where 8 € R" and ¢(p,w) : P* x V — R".

For example, one of ¢(p, w) can be the Levenshtein distance between p
and the canonical pronunciation of w.
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Problem
Model

Features
Dictionary Feature Function
Length Feature Functions
TF-IDF Feature Functions
Articulatory Feature Functions

Learning
Passive-Aggressive (PA)
Strucural Support Vector Machine (SVM)

Experiments
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Dictionary Feature Function

Define the dictionary feature function as

¢dict(pv W) - ]lpepron(w)v

where pron(w) is the set of baseforms of w in the dictionary.
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Dictionary Feature Function

Given a pronunciation dictionary:

privacy pcl p rayl ay? v ax s iy
private pcl p rayl ay2 v ax tcl t
pro pcl p r owl ow2

probably pcl p raa bcl b ax becl b liy
problem pclpraabclblaxm

ddict([pcl p r aa bel b ax bel b | iy], probably) =1
ddict([pcl p r aa bel b ax bel b | iy], problem) =0
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Length Feature Functions

Suppose we have

w probably
p pcl p r aa bc b | iy
pron(w) pcl p r aa bcl b ax bc b | iy

We want to see how the length of the surface form deviates from the
baseform. In this case
Al = -3.
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Length Feature Functions
The length feature function is defined as

¢Alzr(p7 W) = ]lAK:r X ey,

where Al = |p| — |v| for some v € pron(w) and

w1 0
Wi_1 0
eWi = W, ].
wir1 | O

W|V\ 0
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TF-IDF Feature Functions

If I tell you /ih ng/ occurs at least once in the surface form, can you
guess the word?
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TF-IDF Feature Functions

If I tell you /ih ng/ occurs at least once in the surface form, can you
guess the word?

according, accounting, adding, ..., wondering, working, writing
What if /ih ng/ occurs twice?

bringing? singing?
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TF-IDF Feature Functions

The “term” (sub-word unit) frequency is defined as

1 [pl—|u[-+1
TF = Tu—p.. .
U(p) ’p| . ‘u‘ +1 Iz_; U=Pj.it|u|—1

Suppose p = [p r aa | iy]. Then TF;;,/(p) = 7.

Intuitively, if a sub-word unit has a high TF, then it is more
discriminative.
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TF-IDF Feature Functions

If I tell you /ih ng/ occurs at least once in the surface form, can you
guess the word?
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TF-IDF Feature Functions

If I tell you /ih ng/ occurs at least once in the surface form, can you
guess the word?

according, accounting, adding, ..., wondering, working, writing

What if /z uw/ occurs?
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TF-IDF Feature Functions

If I tell you /ih ng/ occurs at least once in the surface form, can you
guess the word?

according, accounting, adding, ..., wondering, working, writing

What if /z uw/ occurs?

z00? zoology?
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TF-IDF Feature Functions

The inverse "document” (word) frequency is defined as

V|

IDF, = log Val’
u

where Vy, ={w eV | (p,w) € S,u € p}.

Intuitively, if a sub-word unit is found in a small, specific set of words,

then it is more discriminative.
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TF-IDF Feature Functions

The final TF-IDF feature function for sub-word unit u is defined as

¢U(p7 W) = (TFu(p) X lDFu) X ey.

This feature function is also used in [Zweig et al., 2010].
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Phonetic Alignment Feature Functions

Alignment 1
— p r aa — — | iy
pcl p r aa bc b | iy
Alignment 2
— p r aa - = - |y

pcddl p r aa bc b ax bc b | iy
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Phonetic Alignment Feature Functions
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pcl

pcl
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o

o
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Articulatory Feature Functions:

Alignment

surface s s e ehn ehn n t s s s
voicing - -+ 4+ + + - - - -
s s eh n n n s s s s
nasality - - - + + + - - - -
s s eh n n n s s s s
tonguebody u u u p p u u u u u
s s eh eh eh n n s s s
tongue tip cr cr cr m m c c cr cr cr
s s eh eh eh n n s s s
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Articulatory Feature Functions: Alighment

e We define alignment feature functions on the articulatory level
similar to the phonetic alignments.

o Alignment is done with articulatory based Dynamic Bayesian
Network [Livescu and Glass, 2004].

lip-loc-lab — lip-loc-den 0.5
lip-open-clo — lip-open-wide 0.1
Dartic-align(P, W) = tongue-tip-den — tongue-tip-alv | 0.3
vel-clo — vel-open 0.2
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Articulatory Feature Functions: Log-likelihood

We also include the log-likelihood of the alignment as a feature,

dr(p,w) = E(p,vkv)—h7

where

L(p,w) log-likelihood
h shift
k scale
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Articulatory Feature Functions: Asynchrony

sense /[sehns/ — [seh.nnts]

surface s s e ehn ehn n t s s s
voicing - -+ + + + - - - -
s s eh n n n s s s s
nasality - - - 4+ + + - - - -
s s eh n n n s s s s
tonguebody u u u p p u u u u u
s s eh eh eh n n s s s
tongue tip cr cr cr m m c ¢ cr cr cr
s s eh eh eh n n s s s
asynchrony 1 1 1
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Articulatory Feature Functions: Asynchrony

Define the asynchrony among articulatory variables feature functions as

¢a§async(f1,.7-'2)<b(p7 W) = lagasynC(]‘—l,]'—z)<b’

where

JF1and sets of articulatory variables
async(Fi1, F2) the asynchrony between Fi and F>
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@(p, w)

Features: Big picture

1p€pron(w)

Ta<ae<p @ €5

ILa§A€<b & €zero

TFu(p)IDF, ® e,

TFu(p)IDFy @ €zero

— — pdl
p—p
r—r
— — bcl

# of ranges x |V|

# of sub-word units x |V

(1P| +1)2 -1
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o(p, w)

Features: Big picture

lip-loc-lab — lip-loc-den
lip-open-clo — lip-open-wide
tongue-tip-den — tongue-tip-alv
vel-clo — vel-open

L(p,w) —h
k

]lagasync(tongue tip,tongue body)<b
]lagasync(lip,tongue)<b

Sy |Fil?

# of ranges x
# of combinations
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Learning
Passive-Aggressive (PA)
Strucural Support Vector Machine (SVM)
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Learning: Passive-Aggressive (PA)
[Crammer et al., 2006]

The goal is to find

o1
011 = argmin 5”‘9 — 0.3
0
st. 07 p(pi, we) — 0 (pi, W) > Lyt

where

W = argmax | Ly, 2, — 0" p(pe, we) + 0" p(p:, w)} .

wey
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Learning: Structural Support Vector Machine
(SVM)
Let S = {(p1,w1),...,(Pm,Wm)}. The goal is find
. A N
0" = argmin §H0||2 + ZE(G; pi, w;),
o i=1

where
(0; pis wi) = Lo 2w
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Learning: Structural Support Vector Machine
(SVM)

Let S = {(p1,w1),...,(Pm,Wm)}. The goal is find
0" = argmin éHl§’||2 + iﬁ(@' pi, w;)
) 2 2 — v My Wi )y

where
(0; pis wi) = Lo 2w

We cannot optimize zero-one loss directly. A common trick is to
optimize the hinge loss,

00 pi, wi) = max | Lyew — 0" d(pi,wi) + 6" d(pi,w)| .
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Learning: Structural Support Vector Machine
(SVM)

Let S = {(p1,w1),...,(Pm,Wm)}. The goal is find
0" = argmin éHHHZ + iﬁ(@' pi, w;)
) 2 2 — v My Wi )y

where
(0; pis wi) = Lo 2w

We cannot optimize zero-one loss directly. A common trick is to
optimize the hinge loss,

00 pi, wi) = max | Lyew — 0" d(pi,wi) + 6" d(pi,w)| .

We use Pegasos [Shalev-Shwartz et al., 2007] to solve the above
problem.
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Large-Margin Learning: Intuition

Given p = [pcl p r aa bcl b | iy], we want to find 8 such that

score

T

margin

0" ¢(p, probably) «— good guy

0" ¢(p, probable)
0" ¢(p, problem)

1

bad guys
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dataset

lexicon

total tokens
length differences

asynchrony

asynchrony degree

Experiments: Setting

Switchboard

3328 words

3344 tokens
-3,-2,-1,0,1,2,3

tongue tip and tongue body
lip and tongue

lip, tongue and glottis, velum

(—OO, _3)7 [_37 2)7 [_27 _1)7 [_17 0)7
[0,1),[1,2),[2,3),[3, )
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Experiments: Result

Training 2942 tokens

Dev 165 tokens
Test 237 tokens
’ Model ‘ Error Rate ‘
lexicon lookup 59.3%

(from [Livescu, 2005])
lexicon + Levenshtein distance | 41.8%
articulatory based DBN 29.1%
[Jyothi et al., 2011]
Passive-Aggressive/ALL 15.2%
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Experiments: Comparing learning methods

’ Algorithm ‘ CRF PA and Pegasos
# of non-zero entries in 8 | 4,000,000 | 800,000
Time for each epoch 45 min 15 min

DP+ dictionary, length, phone bigram TF-IDF, phonetic align-
ment
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Experiments: Comparing learning methods

5-fold cross-validation for different learning methods.

: 13.8 _‘_13 .9

lex Iéx Cls\F PA Pegasos
lev. dist. DP+ DP+ DP+

DP—+ dictionary, length, phone bigram TF-IDF, phonetic align-
ment
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Experiments: Feature combinations

5-fold cross-validation for different feature combinations.

Error Rate
w =Y
o o

N
o

10

_;_22.7
: 142 '140 _._138 ‘i13_2
PA PA PR PA
p2 ph.alg. p2 p2 p2 ALL
ph. alg. ph. alg. ph. alg.
len. len.

dict.
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Example of Learned Weights

9p€pron(w)

HP—>P

Ot —sdx
90y1—>oy,n1
90y2—>oy,n2
On—r

O —skel

9AZ<*3 for probably
9A€:—3 for probably
6A€:f2 for probably
QAE:—I for probably

0.562960

0.187971
0.291054
0.065720
0.065720
-0.029258
-0.020868

0.131365
-0.010327
0.019158
0.122276
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Conclusion

e Propose a discriminative framework for pronunciation modeling
o Incorporate a large set of complex features

e Use large-margin learning
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Future Work

e Acoustics

o Align posteriors with baseforms in the dictionary
e Extend TF-IDF to soft counts from posteriors.

e Word Sequences

o Lattice rescoring
o First-pass decoding

e Compare with SCRF [Zweig and Nguyen, 2009]
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Phonetic Alignment Feature Functions

Given p,q € PU{—}, we encode p and g with two four tuples
(s1,2,53,54) and (t1, to, t3, t4), which represents

e consonant place

e consonant manner

e vowel place

e vowel manner.

Define the similarity between p and q as

( ) 1, ifp=—-Vg=—;
s(p,q) = .
p;q Zj}zl 15—, otherwise,

and run dynamic programming.
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Phonetic Alignment Feature Functions

The alignment feature function for p — q, for p,q € P U {—}, is defined

as,
Kw Lg

¢p—>q p,w)= Zzﬂak, =p,b,i=q>

Pk1,1

where K, = |pron(w)|, L is the length of the k-th alignment, and

7 = ZkKil :LLI ]lak,,:Pv if peP;
g |p‘KWa if p=-.
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Articulatory Feature Functions

Let F be the set of articulatory variables that consists of

tongue tip location
tongue tip opening
tongue body location
tongue body opening
lip opening

glottis

velum
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Articulatory Feature Functions

Given p,q € F, for F € F, the feature function for articulatory
alignment is defined as

L
1
¢P%q P, w Z § : =p,bj=q
=1
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Articulatory Feature Functions

surface

s s e ehn ehn n t s s s
voicing - -+ 4+ + + - - - -

s s eh n n n s s s s
nasality - - - + + + - - - -

s s eh n n n s s s s
tonguebody u u u p p Uu u u u u

s s eh eh eh n n s s s
tongue tip cr cr cr m m c c cr cr cr

s s eh eh eh n n s s s
asynchrony 1 1 1
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Articulatory Feature Functions

For Fp, Fx € F, the asynchrony between Fp, and Fj is defined as

L
1
async(Fp, Fx) = 7 § (thi — tk,i)
i—1

More generally, for F1, F» C F, the asynchrony between F; and F> is
defined as

L

async(Fi, Fa) = Z |}_11|Zt, |]__|Z

i=1 FreF FreFs

Define the asynchrony among articulatory variables feature functions as

¢a§async(.7—'1,]-'2)§b(pa W) = ILagasync(]-'l,]-'z)gb
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Experiments

Training 2942 tokens

Dev 165 tokens

Test 237 tokens
| Model \ ER
lexicon lookup (from [Livescu, 2005]) | 59.3%
lexicon + Levenshtein distance 41.8%
[Jyothi et al., 2011] 29.1%
CRF/DP+ 21.5%
PA/DP+ 15.2%
Pegasos/DP+ 14.8%
PA/ALL 15.2%
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