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Problem: Pronunciation variation

probably

/pcl p r aa bcl b ax bcl b l iy/
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[p r ay]
[p ow ih]
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pronunciation
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Previous Work

• Learn alternative pronunciations
[Holter and Svendsen, 1999]

• Learn phonetic transformations
[Riley et al., 1999, Hazen et al., 2005, Hutchinson and Droppo, 2011]

• Learn articulatory pronunciation models
[Livescu and Glass, 2004, Jyothi et al., 2011]

• Learn alternative pronunciations with MCE
[Vinyals et al., 2009, Korkmazskiy and Juang, 1997]
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Contribution

• Propose a discriminative framework for pronunciation modeling

• Incorporate a large number of complex features

• Use large-margin learning
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Lexical Access: Definition

[p r aa l iy] 7→ ?
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Lexical Access: Previous work

Experiments on a subset of Switchboard.

Model Error Rate

lexicon lookup
(from [Livescu, 2005])

59.3%
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Lexical Access: Goal

f
[p r aa l iy] 7→ probably

p ∈ P∗ w ∈ V

P set of sub-word units
P∗ set of all sequences of sub-word units
V vocabulary
w word
p sequence of sub-word units
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Model

We model f : P∗ → V as

w∗ = f (p) = argmax
w∈V

θ>φ(p,w),

where θ ∈ Rn and φ(p,w) : P∗ × V → Rn.

For example, one of φ(p,w) can be the Levenshtein distance between p
and the canonical pronunciation of w .
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Problem

Model

Features
Dictionary Feature Function
Length Feature Functions
TF-IDF Feature Functions
Articulatory Feature Functions

Learning
Passive-Aggressive (PA)
Strucural Support Vector Machine (SVM)

Experiments
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Dictionary Feature Function

Define the dictionary feature function as

φdict(p,w) = 1p∈pron(w),

where pron(w) is the set of baseforms of w in the dictionary.
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Dictionary Feature Function

Given a pronunciation dictionary:

...
privacy pcl p r ay1 ay2 v ax s iy
private pcl p r ay1 ay2 v ax tcl t
pro pcl p r ow1 ow2
probably pcl p r aa bcl b ax bcl b l iy
problem pcl p r aa bcl b l ax m
...

φdict([pcl p r aa bcl b ax bcl b l iy], probably) = 1

φdict([pcl p r aa bcl b ax bcl b l iy], problem) = 0
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Length Feature Functions

Suppose we have

w probably
p pcl p r aa bcl b l iy
pron(w) pcl p r aa bcl b ax bcl b l iy

We want to see how the length of the surface form deviates from the
baseform. In this case

∆` = −3.
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Length Feature Functions

The length feature function is defined as

φ∆`=r (p,w) = 1∆`=r ⊗ ew ,

where ∆` = |p| − |v| for some v ∈ pron(w) and

ewi =



w1 0
...

...
wi−1 0
wi 1
wi+1 0
...

...
w|V| 0


.
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TF-IDF Feature Functions

If I tell you /ih ng/ occurs at least once in the surface form, can you
guess the word?

according, accounting, adding, . . . , wondering, working, writing

What if /ih ng/ occurs twice?

bringing? singing?
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TF-IDF Feature Functions

The “term” (sub-word unit) frequency is defined as

TFu(p) =
1

|p| − |u|+ 1

|p|−|u|+1∑
i=1

1u=pi :i+|u|−1
.

Suppose p = [p r aa l iy]. Then TF/l iy/(p) = 1
4 .

Intuitively, if a sub-word unit has a high TF, then it is more
discriminative.
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TF-IDF Feature Functions

The inverse “document” (word) frequency is defined as

IDFu = log
|V|
|Vu|

,

where Vu = {w ∈ V | (p,w) ∈ S ,u ∈ p}.

Intuitively, if a sub-word unit is found in a small, specific set of words,
then it is more discriminative.
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TF-IDF Feature Functions

The final TF-IDF feature function for sub-word unit u is defined as

φu(p,w) = (TFu(p)× IDFu)⊗ ew .

This feature function is also used in [Zweig et al., 2010].
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Phonetic Alignment Feature Functions

Alignment 1

− p r aa − − l iy
pcl p r aa bcl b l iy

Alignment 2

− p r aa − − − − − l iy
pcl p r aa bcl b ax bcl b l iy
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Phonetic Alignment Feature Functions

Turn these

− p r aa − − l iy
pcl p r aa bcl b l iy

− p r aa − − − − − l iy
pcl p r aa bcl b ax bcl b l iy

into this

− → pcl
p → p
r → r
aa → aa
− → bcl
− → b
− → ax
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Articulatory Feature Functions: Alignment

surface s s eh eh n eh n n t s s s

voicing - - + + + + - - - -
s s eh n n n s s s s

nasality - - - + + + - - - -
s s eh n n n s s s s

tongue body u u u p p u u u u u
s s eh eh eh n n s s s

tongue tip cr cr cr m m cl cl cr cr cr
s s eh eh eh n n s s s
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Articulatory Feature Functions: Alignment

• We define alignment feature functions on the articulatory level
similar to the phonetic alignments.

• Alignment is done with articulatory based Dynamic Bayesian
Network [Livescu and Glass, 2004].

φartic-align(p,w) =


lip-loc-lab→ lip-loc-den 0.5
lip-open-clo→ lip-open-wide 0.1
tongue-tip-den→ tongue-tip-alv 0.3
vel-clo→ vel-open 0.2
...

...



36 / 60



Articulatory Feature Functions: Log-likelihood

We also include the log-likelihood of the alignment as a feature,

φLL(p,w) =
L(p,w)− h

k
,

where

L(p,w) log-likelihood
h shift
k scale
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Articulatory Feature Functions: Asynchrony

sense /s eh n s/ → [s eh n n t s]

surface s s eh eh n eh n n t s s s

voicing - - + + + + - - - -
s s eh n n n s s s s

nasality - - - + + + - - - -
s s eh n n n s s s s

tongue body u u u p p u u u u u
s s eh eh eh n n s s s

tongue tip cr cr cr m m cl cl cr cr cr
s s eh eh eh n n s s s

asynchrony 1 1 1
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Articulatory Feature Functions: Asynchrony

Define the asynchrony among articulatory variables feature functions as

φa≤async(F1,F2)<b(p,w) = 1a≤async(F1,F2)<b,

where

F1 and F2 sets of articulatory variables
async(F1, F2) the asynchrony between F1 and F2
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Features: Big picture

φ(p,w) =

1p∈pron(w)

1a≤∆`<b ⊗ ea
...

1a≤∆`<b ⊗ ezero

# of ranges× |V|

TFu(p)IDFu ⊗ ea
...

TFu(p)IDFu ⊗ ezero

# of sub-word units× |V|

− → pcl
p→ p
r→ r
− → bcl

...

 (|P|+ 1)2 − 1
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Features: Big picture

φ(p,w) =

lip-loc-lab→ lip-loc-den
lip-open-clo→ lip-open-wide

tongue-tip-den→ tongue-tip-alv
vel-clo→ vel-open

...


∑7

i=1 |Fi |2

L(p,w)− h

k

1a≤async(tongue tip,tongue body)<b

1a≤async(lip,tongue)<b
...

 # of ranges ×
# of combinations
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Learning: Passive-Aggressive (PA)
[Crammer et al., 2006]

The goal is to find

θt+1 = argmin
θ

1

2
‖θ − θt‖2

2

s.t. θ>φ(pi ,wt)− θ>φ(pi , ŵ) ≥ 1wt 6=ŵ ,

where

ŵ = argmax
w∈V

[
1wt 6=w − θ>φ(pt ,wt) + θ>φ(pt ,w)

]
.
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Learning: Structural Support Vector Machine
(SVM)

Let S = {(p1,w1), . . . , (pm,wm)}. The goal is find

θ∗ = argmin
θ

λ

2
‖θ‖2

2 +
m∑
i=1

`(θ; pi ,wi ),

where
`(θ; pi ,wi ) = 1f (pi )6=wi

.

We cannot optimize zero-one loss directly. A common trick is to
optimize the hinge loss,

`(θ; pi ,wi ) = max
w∈V

[
1wi 6=w − θ>φ(pi ,wi ) + θ>φ(pi ,w)

]
.

We use Pegasos [Shalev-Shwartz et al., 2007] to solve the above
problem.
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Large-Margin Learning: Intuition

Given p = [pcl p r aa bcl b l iy], we want to find θ such that

score

margin

θ>φ(p, probably)

θ>φ(p, probable)

θ>φ(p, problem)

...

good guy

bad guys
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Experiments: Setting

dataset Switchboard

lexicon 3328 words

total tokens 3344 tokens

length differences -3, -2, -1, 0, 1, 2, 3

asynchrony tongue tip and tongue body
lip and tongue
lip, tongue and glottis, velum

asynchrony degree (−∞,−3), [−3, 2), [−2,−1), [−1, 0),
[0, 1), [1, 2), [2, 3), [3,∞)
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Experiments: Result

Training 2942 tokens
Dev 165 tokens
Test 237 tokens

Model Error Rate

lexicon lookup
(from [Livescu, 2005])

59.3%

lexicon + Levenshtein distance 41.8%

articulatory based DBN
[Jyothi et al., 2011]

29.1%

Passive-Aggressive/ALL 15.2%
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Experiments: Comparing learning methods

Algorithm CRF PA and Pegasos

# of non-zero entries in θ 4,000,000 800,000

Time for each epoch 45 min 15 min

DP+ dictionary, length, phone bigram TF-IDF, phonetic align-
ment
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Experiments: Comparing learning methods

5-fold cross-validation for different learning methods.

DP+ dictionary, length, phone bigram TF-IDF, phonetic align-
ment
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Experiments: Feature combinations

5-fold cross-validation for different feature combinations.
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Example of Learned Weights

θp∈pron(w) 0.562960

θp→p 0.187971
θt→dx 0.291054
θoy1→oy n1 0.065720
θoy2→oy n2 0.065720
θn→r -0.029258
θf→kcl -0.020868

θ∆`<−3 for probably 0.131365
θ∆`=−3 for probably -0.010327
θ∆`=−2 for probably 0.019158
θ∆`=−1 for probably 0.122276
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Conclusion

• Propose a discriminative framework for pronunciation modeling

• Incorporate a large set of complex features

• Use large-margin learning
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Future Work

• Acoustics
• Align posteriors with baseforms in the dictionary
• Extend TF-IDF to soft counts from posteriors.

• Word Sequences
• Lattice rescoring
• First-pass decoding

• Compare with SCRF [Zweig and Nguyen, 2009]
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[th ae ng kcl k] [y uw]
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Phonetic Alignment Feature Functions

Given p, q ∈ P ∪ {−}, we encode p and q with two four tuples
(s1, s2, s3, s4) and (t1, t2, t3, t4), which represents

• consonant place

• consonant manner

• vowel place

• vowel manner.

Define the similarity between p and q as

s(p, q) =

{
1, if p = − ∨ q = −;∑4

i=1 1si=ti , otherwise,

and run dynamic programming.
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Phonetic Alignment Feature Functions

The alignment feature function for p → q, for p, q ∈ P ∪ {−}, is defined
as,

φp→q(p,w) =
1

Zp

Kw∑
k=1

Lk∑
i=1

1ak,i=p,bk,i=q,

where Kw = |pron(w)|, Lk is the length of the k-th alignment, and

Zp =

{∑Kw
k=1

∑Lk
i=1 1ak,i=p, if p ∈ P;

|p|Kw , if p = −.
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Articulatory Feature Functions

Let F be the set of articulatory variables that consists of

• tongue tip location

• tongue tip opening

• tongue body location

• tongue body opening

• lip opening

• glottis

• velum
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Articulatory Feature Functions

Given p, q ∈ F , for F ∈ F , the feature function for articulatory
alignment is defined as

φp→q(p,w) =
1

L

L∑
i=1

1ai=p,bi=q
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Articulatory Feature Functions

surface s s eh eh n eh n n t s s s

voicing - - + + + + - - - -
s s eh n n n s s s s

nasality - - - + + + - - - -
s s eh n n n s s s s

tongue body u u u p p u u u u u
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Articulatory Feature Functions

For Fh,Fk ∈ F , the asynchrony between Fh and Fk is defined as

async(Fh,Fk) =
1

L

L∑
i=1

(th,i − tk,i )

More generally, for F1,F2 ⊂ F , the asynchrony between F1 and F2 is
defined as

async(F1,F2) =
1

L

L∑
i=1

 1

|F1|
∑

Fh∈F1

th,i −
1

|F2|
∑

Fk∈F2

tk,i


Define the asynchrony among articulatory variables feature functions as

φa≤async(F1,F2)≤b(p,w) = 1a≤async(F1,F2)≤b
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Experiments

Training 2942 tokens
Dev 165 tokens
Test 237 tokens

Model ER

lexicon lookup (from [Livescu, 2005]) 59.3%

lexicon + Levenshtein distance 41.8%

[Jyothi et al., 2011] 29.1%

CRF/DP+ 21.5%

PA/DP+ 15.2%
Pegasos/DP+ 14.8%
PA/ALL 15.2%

66 / 60


	Problem
	Model
	Features
	Dictionary Feature Function
	Length Feature Functions
	TF-IDF Feature Functions
	Articulatory Feature Functions

	Learning
	Passive-Aggressive (PA)
	Strucural Support Vector Machine (SVM)

	Experiments
	Appendix

