Discriminative Pronunciation Modeling

Joseph Keshet Department of Computer Science Bar-Ilan University

joint work with Hao Tang and Karen Livescu

Problem: Pronunciation variation

word

probably

Problem: Pronunciation variation

word

probably

canonical pronunciation (baseform)

/pcl p r aa bcl b ax bcl b l iy/

Problem: Pronunciation variation

word probably

pronunciation (baseform)

/pcl p r aa bcl b ax bcl b l iy/

surface pronunciation (surface form) [p r aa b iy] [p r aa l iy] [p r ay] [p ow ih] [p aa iy]

Previous Work

- Learn alternative pronunciations [Holter and Svendsen, 1999]
- Learn phonetic transformations [Riley et al., 1999, Hazen et al., 2005, Hutchinson and Droppo, 2011]
- Learn articulatory pronunciation models [Livescu and Glass, 2004, Jyothi et al., 2011]
- Learn alternative pronunciations with MCE [Vinyals et al., 2009, Korkmazskiy and Juang, 1997]

Contribution

- Propose a discriminative framework for pronunciation modeling
- Incorporate a large number of complex features
- Use large-margin learning

Lexical Access: Definition

$[\mathsf{p} \mathsf{ r} \mathsf{ aa} \mathsf{ I} \mathsf{ iy}] \mapsto ?$

Model	Error Rate
lexicon lookup	59.3%
(from [Livescu, 2005])	

Model	Error Rate
lexicon lookup	59.3%
(from [Livescu, 2005])	
lexicon + Levenshtein distance	41.8%

Model	Error Rate
lexicon lookup	59.3%
(from [Livescu, 2005])	
lexicon + Levenshtein distance	41.8%
articulatory based DBN	29.1%
[Jyothi et al., 2011]	

Model	Error Rate
lexicon lookup	59.3%
(from [Livescu, 2005])	
lexicon + Levenshtein distance	41.8%
articulatory based DBN	29.1%
[Jyothi et al., 2011]	
Our approach	15.2%

Lexical Access: Goal

$$egin{array}{ccc} f \ [{\sf p} \ {\sf r} \ {\sf aa} \ {\sf l} \ {\sf iy}] & \mapsto & {\sf probably} \ {f p} \in \mathcal{P}^* & w \in \mathcal{V} \end{array}$$

- \mathcal{P} set of sub-word units
- \mathcal{P}^* set of all sequences of sub-word units
- \mathcal{V} vocabulary
- w word
- **p** sequence of sub-word units

Model

We model $f : \mathcal{P}^* \to \mathcal{V}$ as

$$w^* = f(\mathbf{p}) = \operatorname*{argmax}_{w \in \mathcal{V}} \boldsymbol{\theta}^{ op} \boldsymbol{\phi}(\mathbf{p}, w),$$

where $\boldsymbol{\theta} \in \mathbb{R}^n$ and $\phi(\mathbf{p}, w) : \mathcal{P}^* \times \mathcal{V} \to \mathbb{R}^n$.

For example, one of $\phi(\mathbf{p}, w)$ can be the Levenshtein distance between \mathbf{p} and the canonical pronunciation of w.

Problem

Model

Features

Dictionary Feature Function Length Feature Functions TF-IDF Feature Functions Articulatory Feature Functions

Learning Passive-Aggressive (PA) Strucural Support Vector Machine (SVM)

Experiments

Dictionary Feature Function

Define the dictionary feature function as

$$\phi_{\mathsf{dict}}(\mathbf{p}, w) = \mathbb{1}_{\mathbf{p} \in \mathsf{pron}(w)},$$

where pron(w) is the set of baseforms of w in the dictionary.

Dictionary Feature Function

Given a pronunciation dictionary:

privacy	pcl p r ay1 ay2 v ax s iy
private	pcl p r ay1 ay2 v ax tcl t
pro	pcl p r ow1 ow2
probably	pcl p r aa bcl b ax bcl b l iy
problem	pcl p r aa bcl b l ax m
:	
•	

 $\phi_{dict}([pcl p r aa bcl b ax bcl b l iy], probably) = 1$ $\phi_{dict}([pcl p r aa bcl b ax bcl b l iy], problem) = 0$

Length Feature Functions

Suppose we have

wprobablyppcl p r aa bcl b l iypron(w)pcl p r aa bcl b ax bcl b l iy

We want to see how the length of the surface form deviates from the baseform. In this case

$$\Delta \ell = -3.$$

Length Feature Functions

The length feature function is defined as

$$\phi_{\Delta \ell = r}(\mathbf{p}, w) = \mathbb{1}_{\Delta \ell = r} \otimes \mathbf{e}_w,$$

where $\Delta \ell = |\mathbf{p}| - |\mathbf{v}|$ for some $\mathbf{v} \in pron(w)$ and

$$\mathbf{e}_{oldsymbol{w}_i} = egin{array}{c} w_1 & 0 \ dots & 0 \$$

, ,

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

according, accounting, adding, ..., wondering, working, writing

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

according, accounting, adding, ..., wondering, working, writing

What if /ih ng/ occurs twice?

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

according, accounting, adding, ..., wondering, working, writing

What if /ih ng/ occurs twice?

bringing? singing?

The "term" (sub-word unit) frequency is defined as

$$\mathsf{TF}_{\mathbf{u}}(\mathbf{p}) = \frac{1}{|\mathbf{p}| - |\mathbf{u}| + 1} \sum_{i=1}^{|\mathbf{p}| - |\mathbf{u}| + 1} \mathbb{1}_{\mathbf{u} = \mathbf{p}_{i:i+|\mathbf{u}|-1}}.$$

Suppose $\mathbf{p} = [\mathbf{p} \ \mathbf{r} \ \mathbf{aa} \ \mathbf{l} \ \mathbf{iy}]$. Then $\mathsf{TF}_{/\mathsf{l} \ \mathbf{iy}/}(\mathbf{p}) = \frac{1}{4}$.

Intuitively, if a sub-word unit has a high TF, then it is more discriminative.

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

according, accounting, adding, ..., wondering, working, writing

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

according, accounting, adding, ..., wondering, working, writing

What if /z uw/ occurs?

If I tell you /ih ng/ occurs at least once in the surface form, can you guess the word?

according, accounting, adding, ..., wondering, working, writing

What if /z uw/ occurs?

zoo? zoology?

The inverse "document" (word) frequency is defined as

$$\mathsf{IDF}_{\mathbf{u}} = \mathsf{log}\, rac{|\mathcal{V}|}{|\mathcal{V}_{\mathbf{u}}|},$$

where $\mathcal{V}_{\mathbf{u}} = \{ w \in \mathcal{V} \mid (\mathbf{p}, w) \in S, \mathbf{u} \in \mathbf{p} \}.$

Intuitively, if a sub-word unit is found in a small, specific set of words, then it is more discriminative.

The final TF-IDF feature function for sub-word unit \mathbf{u} is defined as

$$\phi_{\mathbf{u}}(\mathbf{p}, w) = (\mathsf{TF}_{\mathbf{u}}(\mathbf{p}) \times \mathsf{IDF}_{\mathbf{u}}) \otimes \mathbf{e}_{w}.$$

This feature function is also used in [Zweig et al., 2010].

Alignment 1

—	р	r	аа	—	_	Ι	iy
pcl	р	r	аа	bcl	b	Ι	iy

Alignment 2

praa — praa — l iy pcl praa bcl b ax bcl b l iy

Turn these

$$\begin{array}{ccc} - & \rightarrow & pcl \\ p & \rightarrow & p \\ r & \rightarrow & r \\ aa & \rightarrow & aa \\ - & \rightarrow & bcl \\ - & \rightarrow & b \\ - & \rightarrow & ax \end{array}$$

Turn these

$$\begin{array}{ccc} - & \rightarrow & pcl \\ p & \rightarrow & p \\ r & \rightarrow & r \\ aa & \rightarrow & aa \\ - & \rightarrow & bcl \\ - & \rightarrow & b \\ - & \rightarrow & ax \end{array}$$

Turn these

$$\begin{array}{ccc} - & \rightarrow & \text{pcl} \\ \textbf{p} & \rightarrow & \textbf{p} \\ \textbf{r} & \rightarrow & \textbf{r} \\ \textbf{aa} & \rightarrow & \textbf{aa} \\ - & \rightarrow & \text{bcl} \\ - & \rightarrow & \textbf{b} \\ - & \rightarrow & \textbf{ax} \end{array}$$

Turn these

$$\begin{array}{cccc} - & \rightarrow & pcl \\ p & \rightarrow & p \\ r & \rightarrow & r \\ aa & \rightarrow & aa \\ - & \rightarrow & bcl \\ - & \rightarrow & b \\ - & \rightarrow & ax \end{array}$$

Articulatory Feature Functions: Alignment

surface	S	S	eh	eh₋n	eh₋n	n	t	S	S	S
voicing	-	-	+	+	+	+	-	-	-	-
	S	s	eh	n	n	n	S	s	S	S
nasality	-	-	-	+	+	+	-	-	-	-
	s	S	eh	n	n	n	S	s	s	S
tongue body	u	u	u	р	р	u	u	u	u	u
	S	S	eh	eh	eh	n	n	s	S	S
tongue tip	cr	cr	cr	m	m	cl	cl	cr	cr	cr
	S	S	eh	eh	eh	n	n	s	S	S

Articulatory Feature Functions: Alignment

- We define alignment feature functions on the articulatory level similar to the phonetic alignments.
- Alignment is done with articulatory based Dynamic Bayesian Network [Livescu and Glass, 2004].

$$\phi_{\text{artic-align}}(\mathbf{p}, w) = \begin{cases} \text{lip-loc-lab} \rightarrow \text{lip-loc-den} \\ \text{lip-open-clo} \rightarrow \text{lip-open-wide} \\ \text{tongue-tip-den} \rightarrow \text{tongue-tip-alv} \\ \text{vel-clo} \rightarrow \text{vel-open} \\ \vdots \end{cases} \begin{pmatrix} 0.5 \\ 0.1 \\ 0.3 \\ 0.2 \\ \vdots \end{pmatrix}$$

Articulatory Feature Functions: Log-likelihood

We also include the log-likelihood of the alignment as a feature,

$$\phi_{LL}(\mathbf{p},w) = \frac{\mathcal{L}(\mathbf{p},w) - h}{k},$$

where

$$\mathcal{L}(\mathbf{p}, w)$$
 log-likelihood
 h shift
 k scale

surface	S	S	eh	eh_n	eh_n	n	t	S	S	S
voicing	-	-	+	+	+	+	-	-	-	-
	s	S	eh	n	n	n	S	s	s	S
nasality	-	-	-	+	+	+	-	-	-	-
	s	s	eh	n	n	n	S	s	s	S
tongue body	u	u	u	р	р	u	u	u	u	u
	s	S	eh	eh	eh	n	n	s	s	S
tongue tip	cr	cr	cr	m	m	cl	cl	cr	cr	cr
	S	S	eh	eh	eh	n	n	S	S	S
asynchrony				1	1		1			

sense /s eh n s/ \rightarrow [s eh_n n t s]

surface	S	S	eh	eh_n	eh_n	n	t	S	S	S
voicing	-	-	+	+	+	+	-	-	-	-
	s	S	eh	n	n	n	S	s	s	S
nasality	-	-	-	+	+	+	-	-	-	-
	s	s	eh	n	n	n	S	s	s	S
tongue body	u	u	u	р	р	u	u	u	u	u
	s	S	eh	eh	eh	n	n	s	s	S
tongue tip	cr	cr	cr	m	m	cl	cl	cr	cr	cr
	S	S	eh	eh	eh	n	n	S	S	S
asynchrony				1	1		1			

sense /s eh n s/ \rightarrow [s eh_n n t s]

surface	S	S	eh	eh_n	eh_n	n	t	S	S	S
voicing	-	-	+	+	+	+	-	-	-	-
	s	S	eh	n	n	n	S	s	s	S
nasality	-	-	-	+	+	+	-	-	-	-
	s	s	eh	n	n	n	S	s	s	S
tongue body	u	u	u	р	р	u	u	u	u	u
	s	S	eh	eh	eh	n	n	s	s	S
tongue tip	cr	cr	cr	m	m	cl	cl	cr	cr	cr
	S	S	eh	eh	eh	n	n	S	S	S
asynchrony				1	1		1			

sense /s eh n s/ \rightarrow [s eh_n n t s]

Define the asynchrony among articulatory variables feature functions as

$$\phi_{a \leq \operatorname{async}(\mathcal{F}_1, \mathcal{F}_2) < b}(\mathbf{p}, w) = \mathbb{1}_{a \leq \operatorname{async}(\mathcal{F}_1, \mathcal{F}_2) < b},$$

where

 \mathcal{F}_1 and \mathcal{F}_2 sets of articulatory variables async(\mathcal{F}_1 , \mathcal{F}_2) the asynchrony between \mathcal{F}_1 and \mathcal{F}_2

$$\phi(\mathbf{p}, w) = \begin{bmatrix} \mathbf{I}_{\mathbf{p} \in pron(w)} \\ 1_{a \leq \Delta \ell < b} \otimes \mathbf{e}_{a} \\ \vdots \\ 1_{a \leq \Delta \ell < b} \otimes \mathbf{e}_{zero} \\ \hline \mathbf{TF}_{\mathbf{u}}(\mathbf{p}) \mathbf{IDF}_{\mathbf{u}} \otimes \mathbf{e}_{a} \\ \vdots \\ \mathbf{TF}_{\mathbf{u}}(\mathbf{p}) \mathbf{IDF}_{\mathbf{u}} \otimes \mathbf{e}_{a} \\ \vdots \\ \mathbf{TF}_{\mathbf{u}}(\mathbf{p}) \mathbf{IDF}_{\mathbf{u}} \otimes \mathbf{e}_{zero} \\ \hline - \rightarrow pcl \\ p \rightarrow p \\ r \rightarrow r \\ - \rightarrow bcl \\ \vdots \\ \end{bmatrix} \# \text{ of sub-word units } \times |\mathcal{V}|$$

Features: Big picture

Problem

Model

Features

Dictionary Feature Function Length Feature Functions TF-IDF Feature Functions Articulatory Feature Functions

Learning Passive-Aggressive (PA) Strucural Support Vector Machine (SVM)

Experiments

Learning: Passive-Aggressive (PA) [Crammer et al., 2006]

The goal is to find

$$\begin{split} \boldsymbol{\theta}_{t+1} &= \operatorname*{argmin}_{\boldsymbol{\theta}} \frac{1}{2} \| \boldsymbol{\theta} - \boldsymbol{\theta}_t \|_2^2 \\ \text{s.t. } \boldsymbol{\theta}^\top \boldsymbol{\phi}(\mathbf{p}_i, w_t) - \boldsymbol{\theta}^\top \boldsymbol{\phi}(\mathbf{p}_i, \hat{w}) \geq \mathbb{1}_{w_t \neq \hat{w}}, \end{split}$$

where

$$\hat{w} = \operatorname*{argmax}_{w \in \mathcal{V}} \left[\mathbbm{1}_{w_t \neq w} - oldsymbol{ heta}^ op \phi(\mathbf{p}_t, w_t) + oldsymbol{ heta}^ op \phi(\mathbf{p}_t, w)
ight].$$

Learning: Structural Support Vector Machine (SVM)

Let $S = \{(\mathbf{p}_1, w_1), \dots, (\mathbf{p}_m, w_m)\}$. The goal is find

$$oldsymbol{ heta}^* = \operatorname*{argmin}_{oldsymbol{ heta}} rac{\lambda}{2} \|oldsymbol{ heta}\|_2^2 + \sum_{i=1}^m \ell(oldsymbol{ heta}; \mathbf{p}_i, w_i),$$

where

$$\ell(\boldsymbol{\theta};\mathbf{p}_i,w_i) = \mathbb{1}_{f(\mathbf{p}_i)\neq w_i}.$$

Learning: Structural Support Vector Machine (SVM)

Let $S = \{(\mathbf{p}_1, w_1), \dots, (\mathbf{p}_m, w_m)\}$. The goal is find

$$oldsymbol{ heta}^* = \operatorname*{argmin}_{oldsymbol{ heta}} rac{\lambda}{2} \|oldsymbol{ heta}\|_2^2 + \sum_{i=1}^m \ell(oldsymbol{ heta}; \mathbf{p}_i, w_i),$$

where

$$\ell(\boldsymbol{\theta};\mathbf{p}_i,w_i) = \mathbb{1}_{f(\mathbf{p}_i)\neq w_i}.$$

We cannot optimize zero-one loss directly. A common trick is to optimize the hinge loss,

$$\ell(\boldsymbol{\theta}; \mathbf{p}_i, w_i) = \max_{w \in \mathcal{V}} \left[\mathbb{1}_{w_i \neq w} - \boldsymbol{\theta}^\top \phi(\mathbf{p}_i, w_i) + \boldsymbol{\theta}^\top \phi(\mathbf{p}_i, w) \right].$$

Learning: Structural Support Vector Machine (SVM)

Let $S = \{(\mathbf{p}_1, w_1), \dots, (\mathbf{p}_m, w_m)\}$. The goal is find

$$oldsymbol{ heta}^* = \operatorname*{argmin}_{oldsymbol{ heta}} rac{\lambda}{2} \|oldsymbol{ heta}\|_2^2 + \sum_{i=1}^m \ell(oldsymbol{ heta}; \mathbf{p}_i, w_i),$$

where

$$\ell(\boldsymbol{\theta};\mathbf{p}_i,w_i) = \mathbb{1}_{f(\mathbf{p}_i)\neq w_i}.$$

We cannot optimize zero-one loss directly. A common trick is to optimize the hinge loss,

$$\ell(\boldsymbol{\theta}; \mathbf{p}_i, w_i) = \max_{w \in \mathcal{V}} \left[\mathbb{1}_{w_i \neq w} - \boldsymbol{\theta}^\top \phi(\mathbf{p}_i, w_i) + \boldsymbol{\theta}^\top \phi(\mathbf{p}_i, w) \right].$$

We use Pegasos [Shalev-Shwartz et al., 2007] to solve the above problem.

Large-Margin Learning: Intuition

Given $\mathbf{p} = [pcl \ p \ r \ aa \ bcl \ b \ l \ iy]$, we want to find $\boldsymbol{\theta}$ such that

Experiments: Setting

dataset	Switchboard
lexicon	3328 words
total tokens	3344 tokens
length differences	-3, -2, -1, 0, 1, 2, 3
asynchrony	tongue tip and tongue body lip and tongue lip, tongue and glottis, velum
asynchrony degree	$(-\infty, -3), [-3, 2), [-2, -1), [-1, 0), \\ [0, 1), [1, 2), [2, 3), [3, \infty)$

Experiments: Result

Training	2942 tokens
Dev	165 tokens
Test	237 tokens

Model	Error Rate
lexicon lookup	59.3%
(from [Livescu, 2005])	
lexicon + Levenshtein distance	41.8%
articulatory based DBN	29.1%
[Jyothi et al., 2011]	
Passive-Aggressive/ALL	15.2%

Experiments: Comparing learning methods

Algorithm	CRF	PA and Pegasos
# of non-zero entries in $ heta$	4,000,000	800,000
Time for each epoch	45 min	15 min

DP+ dictionary, length, phone bigram TF-IDF, phonetic alignment

Experiments: Comparing learning methods

5-fold cross-validation for different learning methods.

DP+ dictionary, length, phone bigram TF-IDF, phonetic alignment

Experiments: Feature combinations

5-fold cross-validation for different feature combinations.

Example of Learned Weights

$\theta_{\mathbf{p}\in pron(w)}$	0.562960
$\theta_{\mathbf{p} \rightarrow \mathbf{p}}$	0.187971
$\theta_{t \to dx}$	0.291054
$\theta_{oy1 \rightarrow oy_n1}$	0.065720
$\theta_{oy2 \rightarrow oy_{-}n2}$	0.065720
$\theta_{n \rightarrow r}$	-0.029258
$ heta_{f ightarrow kcl}$	-0.020868

$\theta_{\Delta \ell < -3}$ for probably	0.131365
$\theta_{\Delta \ell = -3}$ for probably	-0.010327
$\theta_{\Delta \ell = -2}$ for probably	0.019158
$ heta_{\Delta\ell=-1}$ for probably	0.122276

Conclusion

- Propose a discriminative framework for pronunciation modeling
- Incorporate a large set of complex features
- Use large-margin learning

Future Work

- Acoustics
 - Align posteriors with baseforms in the dictionary
 - Extend TF-IDF to soft counts from posteriors.
- Word Sequences
 - Lattice rescoring
 - First-pass decoding
- Compare with SCRF [Zweig and Nguyen, 2009]

[th ae ng kcl k] [y uw]

Reference

K. Livescu Feature-based Pronunciation Modeling for Automatic Speech Recognition. Ph.D. thesis, Massachusetts Institute of Technology, 2005.

- P. Jyothi, K. Livescu, and E. Fosler-Lussier
 Lexical access experiments with context-dependent articulatory feature-based models.
 In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2011.
- G. Zweig, P. Nguyen, and A. Acero Continuous speech recognition with a TF-IDF acoustic model. In Proc. Interspeech, 2010.
- C. P. Browman and L. Goldstein Articulatory phonology: an overview. Phonetica, 49(3-4), 1992.

Given $p, q \in \mathcal{P} \cup \{-\}$, we encode p and q with two four tuples (s_1, s_2, s_3, s_4) and (t_1, t_2, t_3, t_4) , which represents

- consonant place
- consonant manner
- vowel place
- vowel manner.

Define the similarity between p and q as

$$s(p,q) = egin{cases} 1, & ext{if } p = - \lor q = -; \ \sum_{i=1}^4 \mathbbm{1}_{s_i = t_i}, & ext{otherwise}, \end{cases}$$

and run dynamic programming.

The alignment feature function for $p \rightarrow q$, for $p, q \in \mathcal{P} \cup \{-\}$, is defined as,

$$\phi_{\boldsymbol{p}\to\boldsymbol{q}}(\mathbf{p},w)=\frac{1}{Z_{\boldsymbol{p}}}\sum_{k=1}^{K_{w}}\sum_{i=1}^{L_{k}}\mathbb{1}_{a_{k,i}=\boldsymbol{p},b_{k,i}=\boldsymbol{q}},$$

where $K_w = |pron(w)|$, L_k is the length of the k-th alignment, and

$$Z_{p} = \begin{cases} \sum_{k=1}^{K_{w}} \sum_{i=1}^{L_{k}} \mathbb{1}_{a_{k,i}=p}, & \text{if } p \in \mathcal{P}; \\ |\mathbf{p}|K_{w}, & \text{if } p = -. \end{cases}$$

Let ${\mathcal F}$ be the set of articulatory variables that consists of

- tongue tip location
- tongue tip opening
- tongue body location
- tongue body opening
- lip opening
- glottis
- velum

Given $p, q \in F$, for $F \in \mathcal{F}$, the feature function for articulatory alignment is defined as

$$\phi_{\boldsymbol{p}\to\boldsymbol{q}}(\mathbf{p},w) = \frac{1}{L}\sum_{i=1}^{L}\mathbb{1}_{a_i=\boldsymbol{p},b_i=\boldsymbol{q}}$$

surface	S	S	eh	eh_n	eh_n	n	t	S	S	S
voicing	-	-	+	+	+	+	-	-	-	-
	S	s	eh	n	n	n	S	s	s	S
nasality	-	-	-	+	+	+	-	-	-	-
	S	s	eh	n	n	n	S	s	s	S
tongue body	u	u	u	р	р	u	u	u	u	u
	S	s	eh	eh	eh	n	n	s	s	S
tongue tip	cr	cr	cr	m	m	cl	cl	cr	cr	cr
	S	S	eh	eh	eh	n	n	S	S	S
asynchrony				1	1		1			

For $F_h, F_k \in \mathcal{F}$, the asynchrony between F_h and F_k is defined as

$$\mathsf{async}(F_h,F_k) = \frac{1}{L}\sum_{i=1}^{L}(t_{h,i}-t_{k,i})$$

More generally, for $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{F}$, the asynchrony between \mathcal{F}_1 and \mathcal{F}_2 is defined as

$$\mathsf{async}(\mathcal{F}_1, \mathcal{F}_2) = \frac{1}{L} \sum_{i=1}^{L} \left[\frac{1}{|\mathcal{F}_1|} \sum_{F_h \in \mathcal{F}_1} t_{h,i} - \frac{1}{|\mathcal{F}_2|} \sum_{F_k \in \mathcal{F}_2} t_{k,i} \right]$$

Define the asynchrony among articulatory variables feature functions as

$$\phi_{\mathsf{a} \leq \mathsf{async}(\mathcal{F}_1, \mathcal{F}_2) \leq b}(\mathbf{p}, w) = \mathbb{1}_{\mathsf{a} \leq \mathsf{async}(\mathcal{F}_1, \mathcal{F}_2) \leq b}$$

Experiments

Training	2942 tokens
Dev	165 tokens
Test	237 tokens

Model	ER
lexicon lookup (from [Livescu, 2005])	59.3%
lexicon + Levenshtein distance	41.8%
[Jyothi et al., 2011]	29.1%
CRF/DP+	21.5%
PA/DP+	15.2%
Pegasos/DP+	14.8%
PA/ALL	15.2%