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ABSTRACT

We describe a new approach for phoneme recognition which aims
at minimizing the phoneme error rate. Building on structured pre-
diction techniques, we formulate the phoneme recognizer as a linear
combination of feature functions. We state a PAC-Bayesian general-
ization bound, which gives an upper-bound on the expected phoneme
error rate in terms of the empirical phoneme error rate. Our algo-
rithm is derived by finding the gradient of the PAC-Bayesian bound
and minimizing it by stochastic gradient descent. The resulting algo-
rithm is iterative and easy to implement. Experiments on the TIMIT
corpus show that our method achieves the lowest phoneme error rate
compared to other discriminative and generative models with the
same expressive power.

Index Terms— PAC-Bayesian theorem, phoneme recognition,
structured prediction, discriminative training, kernels

1. INTRODUCTION

Phoneme recognition is the task of predicting the phonetic content of
a given speech signal. The performance of this task is measured by
the phoneme error rate, which is defined as the minimum number of
edits needed to transform the predicted phoneme sequence into the
correct one. Unlike previous approaches, in this work we propose
a new algorithm that aims at minimizing the phoneme error rate.
Out algorithm is derived by finding the gradient of a generalizing
bound, which gives an upper-bound on the expected phoneme error
rate in terms of the empirical phoneme error rate. This gradient is
used with a stochastic gradient descent approach to get an efficient
iterative phoneme recognition algorithm.

Most previous work on phoneme recognition has focused on
Hidden Markov Models (HMMs). Classically these models are
trained to estimate the joint likelihood of the acoustic signal and
the underlying phonetic representation [1], and do not aim at min-
imizing the phoneme error rate. Over the years, several discrim-
inative training criteria for HMMs have been proposed, including
Maximum Mutual Information (MMI) [2], Minimum Classifica-
tion Error (MCE) [3], and Large Margin (LM) [4], none of which
minimizes the phoneme error rate directly, with the exception of
Minimum Phone Error (MPE) training criterion [5], which tries to
minimize the smoothed phone error rate, but did not present results
on the standard TIMIT phoneme recognition benchmark. Genera-
tive HMM-based approaches have several drawbacks: they do not
faithfully reflect the underlying structure of speech signals as they
assume conditional independence of observations given the state
sequence [6] and they require uncorrelated acoustic features [7].

Our method builds upon recent advances in discriminative su-
pervised learning for structured labels, such as the structured Sup-
port Vector Machines (SVMs) [8, 9] and Conditional Random Fields
(CRFs) [10]. Structured SVMs generalize binary SVMs to deal with

structured labels (such as sequences) with any cost function. They
minimize a hinge surrogate to the cost with no guarantee for the ac-
tual cost on unseen data. CRFs minimize the regularized log loss on
the training set and is independent on the cost whatsoever.

In this paper we present a new algorithm which aims at minimiz-
ing the phoneme error rate. The algorithm is derived by minimiz-
ing a PAC-Bayesian generalization bound using stochastic gradient
descent. Despite minimizing a non-convex function, experiments
with the TIMIT corpus show that our approach achieves the lowest
phoneme error rate compared to other discriminative and generative
models with the same expressive power.

The paper is organized as follows. In Section 2 we formally in-
troduce the phoneme recognition problem. Next, in Section 3 we de-
scribe the PAC-Bayesian framework. The derivation of the algorithm
is presented in Section 4. We conclude the paper with experimental
results on the TIMIT corpus in Section 5.

2. PROBLEM SETTING

In the problem of phoneme recognition we are given a spoken ut-
terance and the goal is to predict its phonetic content. The spoken
utterance is represented as a sequence of acoustic feature-vectors
x = (x1, . . . ,xT ), whose components xt are vectors in X ⊂ Rd.
Each utterance corresponds to a sequence of phoneme symbols. For-
mally, we denote each phoneme symbol by p ∈ P, where P is a set
of phoneme symbols, and we denote the sequence of phoneme sym-
bols by p = (p1, . . . , pK). Furthermore, we denote by sk ∈ N
the start time of phoneme pk (in frame units) and we denote by
s = (s1, . . . , sK) the sequence of all phoneme start-times. The
number of phonemes K and the number of frames T can be differ-
ent for different inputs, although typically we have T significantly
larger than K. Our goal is to learn a function f that predicts the
correct phoneme sequence given an acoustic sequence. The pho-
netic decoder f is a function from the set of finite-length sequences
over the domain of the acoustic features X∗ to the set of finite-length
sequences over the domain of phoneme symbols, P∗.

Denote by L(p, f(x)) the loss (or the cost) of predicting the
phoneme sequence f(x) where the correct sequence is p. Formally,
L : P∗ × P∗ → R+ is a function that gets two phoneme sequences
(not necessarily of the same length) and returns a positive number
which is the cost of predicting the second sequence where the de-
sired sequence is the first. The loss of a phonetic decoder is usually
the phoneme error rate (also called Levenshtein distance or edit dis-
tance). This loss measures the minimum number of substitutions,
insertions and deletions needed to transform the predicted phoneme
sequence into the correct phoneme sequence normalized by the num-
ber of phonemes in the correct sequence.

Following structured prediction scheme [8, 9, 11], our phonetic
decoder utilizes a fixed mapping φ : X∗×P∗×N∗ → Rn from the
input acoustic representation, a candidate phoneme sequence and a



candidate start-time sequence to feature vectors of length n. This
mapping is needed to have features of the same length. Intuitively,
the vector-valued feature functionφ(x, p, s) is a set of n confidences
for the candidate phoneme sequence and start-time sequence. Our
phonetic decoder is of the following form

fw(x) = argmax
p

(
max
s

w>φ(x, p, s)
)
, (1)

where w ∈ Rn is a weight vector. In this paper we describe a
discriminative supervised learning approach for learning the weight
vector w from a training set of m examples, {(xi, pi)}mi=1. We as-
sume that the examples are drawn from a fixed but unknown distri-
bution D over the domain of the examples, X∗ × P∗. The ultimate
objective is to set the weight vector w so as to minimize the expected
phone error rate between the desired output p and the predicted out-
put fw(x), that is

w∗ = argmin
w

E(x,p)∼D [L(p, fw(x))] . (2)

To do so, we assume that the examples are sampled i.i.d. from D.
Note, however, that we cannot evaluate Eq. (2), sinceD is unknown.
Instead, we use the empirical loss computed over the training set, and
a regularization term is added in order to prevent overfitting when
there is large number of features.

3. THE PAC-BAYESIAN FRAMEWORK

For any weight vector w and a pair (x, p) we defined the generalized
probit surrogate loss as L̂p(w,x, p) as follows where the expectation
is over drawing the “noise” vector ε from a unit-variance isotropic
Gaussian.

Lp(w,x, p) = Eε[L(p, fw+ε(x))]

We define the true probit loss Lp(w) as follows.

Lp(w) = E(x,p)∼D [Lp(w,x, p)] .

and similarly, we define the empirical probit loss L̂p(w) as

L̂p(w) =
1

m

m∑
i=1

Lp(w,xi, pi).

Note that the probit loss corresponds to the phoneme error rate
of the stochastic decoder fw+ε(x) where ε is Gaussian noise vector
from a unit-variance isotropic Gaussian. Hence any theoretical guar-
antee on the probit loss Lp(w) establishes that same guarantee for
the phoneme error rate of an actual (stochastic) decoder. Also note
that the prediction fw(x) depends only on the direction of w. As
we scale w to be arbitrarily large the Gaussian noise has a vanishing
effect on the prediction and the probit loss equals the phoneme error
rate.

We state now a nonstandard version of PAC-Bayesian theorem.
In Appendix A we show that this nonstandard statement is equiva-
lent to a standard PAC-Bayesian bound for linear decoders under a
Gaussian prior and posterior [12].

Theorem 1. With probability of at least 1 − δ over the draw of the
training set the following holds simultaneously for all vectors w

Lp(w) ≤ inf
λ>0

1

1− 1
2λ

[
L̂p(w) +

λ

2(m− 1)
‖w‖2 + λ

m− 1
ln
m

δ

]
.

4. PAC-BAYESIAN STOCHASTIC GRADIENT DESCENT

In this section we describe an algorithm which minimizes the right-
hand side of the PAC-Bayesian bound for a fixed value of λ. The
minimization is carried out by stochastic gradient descent.

We start by finding the gradient of the right hand side of the
PAC-Bayesian bound. Denoting λ′ = λ/(m− 1), we have

∇w

[
L̂p(w) +

λ

2(m− 1)
‖w‖2 + λ

m− 1
ln
m

δ

]
=

= ∇w

[
1

m

m∑
i=1

Eε [L(pi, fw+ε(xi))] +
λ′

2
‖w‖2

]

= ∇w

[
1

m

m∑
i=1

∫
(2π)−d/2e−

1
2
‖ε‖2L(pi, fw+ε(xi))dε+

λ′

2
‖w‖2

]

=
1

m

m∑
i=1

∫
ε · (2π)−d/2e−

1
2
‖ε‖2L(pi, fw+ε(xi))dε+ λ′w

=
1

m

m∑
i=1

Eε [εL(pi, fw+ε(xi))] + λ′w. (3)

Stochastic (or “on-line”) gradient descent learning takes place
in rounds. The algorithm starts at a point w0. At each round the
algorithm moves from wt to wt+1 by minimizing along the line ex-
tending from wt in the direction of the local downhill gradient. The
true gradient is approximated by the gradient at a single example,
(xi, pi), and resulting the following update rule

wt+1 = (1− λ′ηt)wt − ηtEε [εL(pi, fw+ε(xi))] (4)

where ηt is the learning rate. We compute the expectation by sam-
pling. When w has a large norm the sampling will not be effective,
since with high probability any sample of ε drawn from N (0, I) is
orthogonal to the gradient. We solve this issue by importance sam-
pling, and steer the direction of the sampled vector ε to the direction
of the gradient. Formally, let ĝi be a unit vector in the direction of
the gradient:

ĝi =
φ(xi, pi, si)− φ(xi, p′, s′)
‖φ(xi, pi, si)− φ(xi, p′, s′)‖

, (5)

with (p′, s′) the phoneme sequence and its start-time sequence found
by the weight vector wt using Eq. (1), and (pi, si) are the correct
phoneme sequence and start-time sequence. We note in passing
that for the importance sampling and for the initialization we use
the correct start-time sequence si. But the the sequences si are not
used in write hand side of Theorem 1. In order to perform the im-
portance sampling we define a Gaussian distribution with mean ĝi
and the identity covariance matrix, and normalize the expectation by
N (0, I)/N (ĝi, I) = e−‖ε‖

2/2/e−‖ε−ĝi‖2/2 = ke−2ε·ĝi , where k
is a constant that does not depend on ε, and can be absorbed into the
learning parameter. Eq. (4) becomes

wt+1 = (1−λ′ηt)wt−ηtEε

[
εL(pi, fw+ε̂(xi))e

−2ε·ĝi

]
, (6)

where the expectation is now with respect to ε ∼ N (ĝi, I). For
efficiency, we can assume sampling of both ε and−ε simultaneously
and we consider only those directions ε that change the expected
loss, namely

wt+1 = (1− λ′ηt)wt

− ηtEε

[
ε (L(pi, fw+ε(xi))− L(pi, fw−ε(xi)))e

−2ε·ĝi

]
.

The overall algorithm is described in Figure 1.



INPUT: training set {(xi, pi)}mi=1 ;
parameters: λ, η0, and J

INITIALIZATION: w0

FOR t = 1, . . . , T

Pick example (xi, pi) ∈ S

Predict (p′, s′) = argmax(p,s) w
t · φ(xi, p, s)

Set ĝi =
φ(xi, pi, si)− φ(xi, p′, s′)
‖φ(xi, pi, si)− φ(xi, p′, s′)‖

Draw εj fromN (ĝi, I), 1 ≤ j ≤ J
Set Êti = 1

J

∑J
j=1 εj [L(pi, fwt+εj (xi))

− L(pi, fwt−εj (xi))]e
−2εj ·ĝi

Set wt+1 = (1− λ
m−1

η0
t
)wt − η0

t
Êti

OUTPUT: wT+1

Fig. 1. The PAC-Bayesian Theorem Minimization algorithm. The
initialization and importance sampling use the sequences si that are
available in the training data.

5. EXPERIMENTAL RESULTS

We evaluated the proposed method on the TIMIT acoustic-phonetic
continuous speech corpus [13]. The training set contains 462 speak-
ers and 3696 utterances. We used the core test set of 24 speakers
and 192 utterances and a development set of 50 speakers and 400
utterances as defined in [4] for tuning the parameters. Following the
common practice [14], we mappped the 61 TIMIT phonemes into
48 phonemes for training, and further collapsed from 48 phonemes
to 39 phonemes for evaluation. We extracted standard 12 MFCC
features and log energy with their deltas and double deltas to form
39-dimensional acoustic feature vectors. The window size and the
frame size were 25 msec and 10 msec, respectively.

Similarly to the output and transition probabilities in HMMs,
our implementation has two sets of feature functions. The first fea-
ture function set captures the confidence of a phoneme based on the
acoustic. For each phoneme p ∈ P , we define the feature map as the
sum over all acoustic features correspond to phoneme p,

φIp(x, p, s) =
∑
t:pt=p

ψ̃σ(xt), ∀p ∈ P,

where pt is the phoneme at frame t. The mapping ψ̃σ is an approx-
imation to the RBF kernel of order 3 with parameter σ as described
in Appendix B. Below we report results with a context window of
1 frame and a context window of 9 frames, i.e., ψ̂σ is a concatena-
tion of 9 frames, and in each frame the acoustic feature vectors are
mapped using the approximated RBF kernel.

The second set of feature functions captures both the duration of
each phoneme and the transition between phonemes. For each pair
of phonemes p, q ∈ P we define the feature map as a sum over all
transitions between phoneme p and q:

φIIp,q(x, p, s) =
∑

t:pt=p,pt+1=q

β, ∀p, q ∈ P,

where β is a parameter that scales the second feature set.
We applied the algorithm as discussed in Section 4 where the

parameters σ2 = 19, λ = 0.05, β = 0.4, and J = 1000 were

Table 1. Reported results on TIMIT core test set.
Method Frame Phoneme

error rate error rate
HMM [20] 39.3 42.0
HMM [11] 35.1 40.9
KSBSC [11] - 45.1
PA [16] 30.0 33.4
DROP [16] 29.2 31.1
PAC-Bayes 1-frame 27.7 30.2
Online LM-HMM [20] 25.0 30.2
Batch LM-HMM [4] - 28.2
CRFs (9-frames MLP) [21] - 29.3
PAC-Bayes 9-frames 26.5 28.6

found on the development set. The initial weight vector w0 was set
to averaged weight vector of the Passive-Aggressive (PA) algorithm
[15], which was trained with the same set of parameters and with
100 epochs as described in [16].

Table 1 summarizes the results and compare the performance of
the proposed algorithm to other algorithms for phoneme recognition.
Although the algorithm aims at minimizing the phoneme error rate,
we also report the frame error rate, which is the fraction of misclas-
sified frames. A common practice is to split each phoneme segment
into three (or more) states. Using such a technique usually improves
performance (see for example [17, 18, 19]). Here we report results
on approaches which treat the phoneme as a whole, and defer the
issues of splitting into states in our algorithm for future work. In
the upper part of the table (above the line), we report results on ap-
proaches which make use of context window of 1 frame. The first
two rows are two HMM systems taken from [11] and [20] with a
single state corresponding to our setting. KSBSC [11] is kernel-
based recognizer trained with PA algorithm. PA and DROP [16] is
are online algorithm, uses the same setup and feature functions de-
scribed here. Online LM-HMM [20] and Batch LM-HMM [4] are
algorithms for large margin training of continuous density HMMs.
Below the line, at the bottom part of the table, we report the result
with a context of 9 frames. CRFs [21] is based on the computation
of local posteriors with MLPs, which was trained on a context of 9
frames. We can see the our algorithm outperform all algorithms but
the large margin HMMs. The difference between our algorithm and
the LM-HMM algorithm might be in the reacher expressive power
of the latter. Using context of 9 frames the results of our algorithm
comparable to LM-HMM.
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A. PROOF SKETCH OF THEOREM 1

The statement of Theorem 1 is nonstandard. Here we show that
this nonstandard statement is equivalent to a standard PAC-Bayesian
bound. The following is a standard variant of the PAC-Bayesian

theorem for linear decoders under a Gaussian prior and posterior
[12].

Lp(w) ≤ sup

{
Lp :

(L̂p(w)− Lp)2

2Lp
≤

1
2
||w||2 + ln m

δ

m− 1

}
Theorem 1 now follows from the following observation which uses
the observation that for x, y ≥ 0 we have

√
xy = infλ>0

1
2
( x
λ
+

λy).

sup

{
Lp :

(Lp − L̂p)2

2Lp
≤ c

}
= sup

{
Lp : Lp − L̂p ≤

√
2Lpc

}
= sup

{
Lp : ∀ λ > 0 Lp − L̂p ≤

Lp
2λ

+ λc

}
= sup

{
Lp : ∀ λ > 0 Lp ≤

(
1

1− 1
2λ

)(
L̂p + λc

)}
= inf

λ>0

(
1

1− 1
2λ

)(
L̂p + λc

)
.

B. RBF KERNEL APPROXIMATION

Let us start with the Gaussian Radial Basis Function (RBF) kernel
definition

k(x, z) = e−‖x−z‖2/2σ2

= e−‖x‖
2/2σ2

e−‖z‖
2/2σ2

e<x,z>/σ2

.

Since the last term e<x,z>/σ2

is a real number, it can be expanded
using Taylor Expansion as follows:

e<x,z>/σ2

=

N∑
n=1

1

n!

(< x, z >

σ2

)n
=

(
1 +

x

σ
+

x′√
2σ2

+ . . .

)>
·
(
1 +

z

σ
+

z′√
2σ2

+ . . .

)>
,

where x′ (and similarly z′) is defined as

x′ = x2
1 + x2

2 + . . .+ x2
d +
√
2x1x2 + . . .+

√
2xd−1xd.

Overall, the kernel can be written as k(x, z) = ψ(x) ·ψ(z), where

ψσ(x) = e−‖x‖
2/2σ2

(
1 +

x

σ
+

x′√
2σ2

+ . . .

)>
.

Now, instead of using the sum we can use the Taylor expansion

f(x) =
∑
i

αik(xi,x) = w ·ψσ(x). (7)

Using only several Taylor Expansion’s terms we have an approxima-
tion to the Gaussian kernel

f̂(x) = w · ψ̃σ(x).

The length of the approximation ψ̃σ depends on the size of the input
vector x and the size of the approximation. Recall that x ∈ Rd, then
the zeroth approximation is of length one, the first approximation is
of length d, the second approximation is of length d + d(d − 1)/2,
and in general the length of the p-th approximation is of order dp.
In our experiments we used approximation of order 3, which give
approximation error (compared to the true RBF kernel) of less than
0.0001.


