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Abstract
We explore discriminative training of HMM parameters that di-
rectly minimizes the expected error rate. In discriminative train-
ing one is interested in training a system to minimize a desired
error function, like word error rate, phone error rate, or frame
error rate. We review a recent method (McAllester, Hazan and
Keshet, 2010), which introduces an analytic expression for the
gradient of the expected error-rate. The analytic expression
leads to a perceptron-like update rule, which is adapted here
for training of HMMs in an online fashion. While the proposed
method can work with any type of the error function used in
speech recognition, we evaluated it on phoneme recognition of
TIMIT, when the desired error function used for training was
frame error rate. Except for the case of GMM with a single
mixture per state, the proposed update rule provides lower er-
ror rates, both in terms of frame error rate and phone error rate,
than other approaches, including MCE and large margin.
Index Terms: hidden Markov models, online learning, direct
error minimization, discriminative training, automatic speech
recognition, minimum phone error, minimum frame error

1. Introduction
Most up-to-date speech recognition systems are based on hid-
den Markov models (HMMs). The most straightforward tech-
nique to estimate the HMM parameters from a training set of
examples is using maximum likelihood (ML) estimation. ML
estimation attempts to maximize the likelihood of the joint dis-
tribution of the observations and the states. It is very efficient
and widely used, but it does not directly optimize the perfor-
mance of these models. Over the years many researchers in
speech recognition have studied alternative approaches for pa-
rameter estimation, mainly focusing on discriminative training.

Several discriminative methods have been proposed trying
to minimize the error rate, including maximum mutual informa-
tion (MMI) [1], minimum classification error (MCE) [2], min-
imum word error (MWE), and minimum phone error (MPE)
[3]. While all of them lead to lower error rates when properly
trained [4, 5, 6], the proposed objective functions all use surro-
gate smoothed approximations to their respective desired error
functions.

Recently, several researchers have proposed methods for
large margin training of continuous density hidden Markov
models (CD-HMMs) [7, 8, 9]. In large margin training, acous-
tic models are estimated to assign significantly higher scores
to correct transcriptions than competing ones; in particular, the
margin between these scores may be required to grow in propor-
tion to the error function. Large margin training achieves good
performance, but it does not minimize the error-rate directly.

Recently McAllester, Hazan and Keshet [10] propose to
minimize the expected error-rate directly by computing its gra-
dient. This work presented an analytic expression for the gradi-
ent of the expected error-rate, which can be used in an update
rule for training linear structured prediction models. Here we
adapt this method for CD-HMM, which are not linear in the
set of parameters. We use this update rule in online training of
HMM parameters, similar to large margin update of CD-HMM
proposed in [9]. The proposed method can work with any type
of error function typically used in speech recognition, such as
word error rate, phone error rate and frame error rate. This
method was previously tested on phoneme alignment task us-
ing the TIMIT dataset. The performance attained surpassed all
previously reported results on this problem [10]. A different ap-
proach to minimized the regularized error-rate was introduced
in [11].

The paper is organized as follows. In Sec. 2, we present the
problem setting and the goal. In Sec. 3 we describe two closely-
related training approaches, namely, Perceptron and large mar-
gin. Our approach is presented in Sec. 4. In Sec. 5 we present
results on the TIMIT speech database. Finally, in Sec. 6, we
present our conclusions and ideas for future work.

2. Problem Setting
In this section we present the problem definition and our goal.
We begin by reviewing the basic notation of a CD-HMM, fol-
lowing the notation presented in [9]. CD-HMMs define a
joint probability distribution over a sequence of observations
x = (x1, . . . , xT ) and a sequence of (hidden) phonetic states
s = (s1, . . . , sT ). The joint distribution is expressed in terms
of an initial state distribution P(s1), the state transition matrix
P(st+1|st), and the emission densities P(xt|st). The joint dis-
tribution is given by

P(x, s) = P(s1)

T−1∏
t=1

P(st+1|st)
T∏
t=1

P(xt|st). (1)

The emission densities are assumed to be modeled as Gaussian
mixture models (GMMs). Let M denote the number of mixture
components in each state. Each mixture m of the s-th state is
represented by a multivariate Gaussian with a mean µsm and a
covariance matrix Σsm. Thus, the emission density function of
an observation x given a state s is given by

P(x|s) =

M∑
m=1

P(m|s)N (x;µsm,Σsm), (2)

where N (x;µ,Σ) denotes the multivariate Gaussian function
at point x and P(m|s) denotes the mixture weights.



Let us denote by Θ the set of the parameters of the CD-
HMM, and let us use the notation P(x, s|Θ) to emphasize the
dependency of the joint distribution on the parameters. The
model parameters Θ are estimated from a training set of exam-
ples. Each example is composed of a sequence of observations
x and a sequence of target (ground truth) states y. The most
likely sequence of states given the sequence of observations x
predicted by the model with parameters Θ is as follows

ŝ = ŝ(x,Θ) = arg max
s

logP(x, s|Θ), (3)

which can be computed efficiently using the Viterbi algorithm.
We denote byL(ŝ,y) the error rate, or the loss, of predicting the
state sequence ŝ where the target state sequence is y. Usually,
the performance of speech recognition systems is measured in
terms of word error rate. In this paper, we exemplify our ideas
with the problem of phoneme recognition, where the perfor-
mance is measured in terms of phone error rate, that is - the
number of substitutions, insertions and deletions, normalized
by the number of phones in the target sequence. Sometimes the
error rate of phoneme recognition systems is given by frame er-
ror rate, which is the relative number of frames (states) that are
misclassified.

Our goal is to train the model and find its parameters so as
to minimize the expected error rate. More formally,

Θ∗ = arg min
Θ

E [L(ŝ(x,Θ),y)] , (4)

when the expectation is over a draw of (x,y) from a fixed, but
unknown distribution. The paper is focused on a new technique
to train the model by minimizing the expected error-rate.

To minimize the expected error-rate we aim to perform gra-
dient descent directly on the objective in Eq. (4). Unfortu-
nately, direct gradient descent on Eq. (4) is conceptually puz-
zling since the state sequence space is discrete. In this case the
predicted state sequence ŝ(x,Θ) is not a differentiable function
of Θ. As one smoothly changes Θ in Eq. (3) the the sequence
ŝ jumps discontinuously between discrete state values. So one
cannot write ∇ΘE[L(ŝ,y)] as E[∇ΘL(ŝ,y)]. The main result
of this paper is applying our previous work [10] for training
CD-HMMs and performing direct gradient descent on Eq. (4).

3. Perceptron-like Training Methods
Our approach builds on earlier work on Perceptron training of
discrete HMMs [12] and the Perceptron and large-margin train-
ing of continuous density HMMs [13, 9]. We start this sec-
tion by briefly reviewing the latter before presenting the direct
error-rate minimization update rule. Let us define a discriminant
function over the observation and state sequences, by taking the
logarithm of the joint distribution P(x, s) defined in Eq. (1),

D(x, s) = logP(s1)+

T−1∑
t=1

logP(st+1|st)+
T∑
t=1

logP(xt|st).

(5)
Let y denote the correct transcription of the observation se-
quence x. Recall that the predicted state sequence ŝn is given
in Eq. (3). The Perceptron update rule of the CD-HMM param-
eters is given as

Θ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, ŝn)] (6)

where η > 0 is a learning rate. The update in Eq. (6) attempts
to close the gap between D(xn,yn) and D(xn, ŝn) whenever
a recognition error occurs.

Large margin training, on the other hand, seeks to separate
the scores of correct and incorrect transcriptions by the margin
given from the error rate between them. That is

∀s 6= y, D(x,y) > D(x, s) + ρL(s,y); (7)

where L(s,y) is the error, or loss, incurred between the hidden
state sequence s and the target state sequence y, and ρ > 0 is a
constant margin scaling factor. In other words, for large margin
training, the score of the correct transcription should exceed the
score of any incorrect transcription by an amount that grows
in proportion to the number of recognition errors. Define the
error-adjusted inference, ŝρ, as follows

ŝρ = arg max
s

[D(x, s) + ρL(s,y)] , (8)

The right hand side of Eq. (8) can be maximized by a simple
variant of the standard Viterbi algorithm. For online training
of large margin CD-HMMs, the following update rule was pro-
posed [13, 9]:

Θ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, ŝ

ρ
n)] (9)

Eq. (9) differs from Eq. (6) in one critical aspect: namely, we
replace the predicted state sequence ŝn with the sequence ŝρn
from margin-based decoding.

4. Direct Error Rate Minimization
Here we consider the following update rule, where ε is the error-
adjustment weight.

Θ← Θ + η
∂

∂Θ
[D(xn, ŝn)−D(xn, ŝ

ε
n)] (10)

where ŝε is defined similarly to ŝρ

ŝε = arg max
s

[D(x, s) + εL(s,y)] , (11)

whereas the role of ε is very different than ρ. While ρ is a
margin scaling factor, ε is a small number approaching to zero.
Note that when ε = 0 the update rule is meaningless since both
ŝε and ŝ are the same. When we gradually increase ε, there is
a point where ŝεn is not equal to ŝn – this is exactly the point
where the error-rate starts to influence. As we shall see, the up-
date rule is closely related to the definition of the gradient of
the expected error-rate. In the update in Eq. (11) we view ŝε

as worse than ŝ. The update direction moves away from ob-
servations adjusted toward the error-rate. Comparing the large-
margin update to this update, the target state sequence yn in the
former is replaced by the inferred state sequence ŝ in the latter.

We now show that under mild conditions the expected up-
date direction of Eq. (10) approaches the negative direction of
the gradient of the expected error-rate ∇ΘE[L(ŝ,y)] in the
limit as the update weight ε goes to zero.

Theorem 1 For a finite set of possible state sequence values,
and under reasonable boundary constraints [10], we have the
following where ŝε is a function of Θ, x, y and ε.

∇ΘE [L(s,y)] = lim
ε→0

1

ε
E
[
∂

∂Θ
[D(x, ŝε)−D(x, ŝ)]

]
(12)

where
ŝ = arg max

s
D(x, s)

and
ŝε = arg max

s
D(x, s) + εL(y, s).
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Figure 1: The figure presents the integration involve in com-
puting the expectation of (a) the left hand side and (b) the right
hand side of Eq. (12).

A detailed proof of the theorem for the binary linear case is
given in [10]. For completeness we give an intuitive sketch of
the proof here.

Proof sketch. We start by looking at the left hand side of
Eq. (12). Let u(ε) ∼ v(ε) be an asymptotic notation for
limε→0 u/v = 1. By definition of the gradient we have the
following.

ε∆Θ · ∇ΘE [L(ŝ(x,Θ),y)] ∼
E [L(ŝ(x,Θ + ε∆Θ),y)− L(ŝ(x,Θ),y)] (13)

Note thatL(ŝ(x,Θ+ε∆Θ),y)−L(ŝ(x,Θ),y) is nonzero only
when s1 = ŝ(x,Θ + ε∆Θ) 6= ŝ(x,Θ) = s2. For very small ε
this happens only when x is very near the decision boundary be-
tween s1 and s2 — we have that x is on the decision boundary
between s1 and s2 when D(x, s1) = D(x, s2) and both s1 and
s2 yield the maximum value ofD(x, s). The value of Eq. (13) is
determined by an integral over the decision boundaries. Specif-
ically, we integrate the quantity ∆L = L(s1,y) − L(s2,y)
times the width of the region where the state sequence switches
when Θ is changed by ε∆Θ. The width of the region where
the state sequence switches is ε∆Θ · ∂

∂Θ
∆D where ∆D =

D(x, s1) − D(x, s2). This integral is show pictorially in the
left hand side of Fig. 1.

To show Eq. (12) it suffices to show that the quantity in
Eq. (13) is asymptotically equivalent to the following in the
limit of small ε.

∆Θ · E
[
∂

∂Θ

(
D(x, ŝε(x,Θ))−D(x, ŝ(x,Θ))

)]
This quantity is nonzero only when s1 = ŝε(x,Θ) 6=
ŝ(x,Θ) = s2. As ε goes to zero ŝε(x,Θ) 6= ŝ(x,Θ) only
when x is very near the decision boundary between s1 and s2.
As in the previous case, the value of right hand side of Eq. (12)
is determined by an integral over decision boundaries. In this
case we case we integrate the quantity ∆Θ · ∂

∂Θ
∆D times the

width of the region where the error adjustment switches the state
sequence. The width of the region where the error adjustment
switches the state sequence is ε∆L. This is show pictorially in
the right hand side of Fig. 1. The integrals shown in the left
and right hand side of Fig. 1 are both equal to the integral over
the decision boundary of ε∆L∆Θ · ∂

∂Θ
∆D. A more complete

proof can be found in [10].

5. Experiments
We evaluated the proposed method on the TIMIT acoustic-
phonetic continuous speech corpus [14]. The training set con-
tains 462 speakers and 3696 utterances. We used the core test

set of 24 speakers and 192 utterances and a development set
of 50 speakers and 400 utterances as defined in [7] for tun-
ing the parameters. Following the common practice [15], we
mapped the 61 TIMIT phonemes into 48 phonemes for train-
ing, and further collapsed from 48 phonemes to 39 phonemes
for evaluation. We extracted the standard 12 MFCC features
and log energy with their deltas and double deltas to form 39-
dimensional acoustic feature vectors. The window size and the
frame size were 25 msec and 10 msec, respectively.

We built recognizers using monophone CD-HMMs in
which each of 48 states represented a context-independent
phoneme, and we used the GMM re-parametrization as de-
scribed in [8]. We experimented with models of different sizes
by varying the number of Gaussian mixture components in each
state. We evaluated the performance of each CD-HMM by com-
paring the hidden state sequences inferred by Viterbi decoding
to the “ground-truth” phonetic transcriptions provided by the
TIMIT corpus. We report two types of errors: the frame error
rate (FER), computed simply as the percentage of misclassified
frames, and the phone error rate (PER), computed from the edit
distances between ground truth and Viterbi decodings. In calcu-
lating the errors, we follow the standard of mapping 48 phonetic
classes down to broader 39 categories [15]. The performance
of our baseline models with maximum likelihood estimation is
similar to those previously reported [7, 9].

All CD-HMMs were initialized by maximum likelihood es-
timation. Starting from these baseline CD-HMMs, we then
compared the performance of the different online updates in
Eq. (9) and Eq. (10). For the margin-based update (9), the re-
sults of training depend on the margin scaling factor ρ. We
chose the scaling factor ρ that yielded the lowest phone error
rates on the held-out development set.

For the direct error-rate minimization update (10), we used
the error function L to be frame error rate as it is easier to im-
plement compared to phone error rate. Our method is not lim-
ited to this type of error function and we defer the use of phone
error rate to future work. The training with the direct error-rate
minimization update rule depends on ε. While ε theoretically
should approach zero, the way we perform the optimization was
by picking the ε that yielded the lowest phone error rates on the
held-out development set (ε = 0.65). At each iteration we com-
puted the potential update for the given utterance. The update
was only adopted if it decreased the error for that specific ex-
ample. Since the direct error-rate minimization is based on two
predictions, ŝ and ŝε, it is likely to get stuck in a local mini-
mum. In order to avoid local minima, when applying the direct
error-rate minimization update rule (10), we iterated it with a
large-margin update rule (9), which is the closest update rule, in
terms of the objective. For a fair comparison we used the same
number of iterations in all of the online methods.

In general, this mistake-driven approach will not converge
to a fixed set of parameters. However, convergence to a fixed
set can be obtained by averaging parameters across different
updates of Eq. (9) and Eq. (10); the averaging also gives a better
result after a finite number of iterations through the training set
[16]. Note that this averaging does not affect training process:
it only affects the parameters used for evaluating the model on
held-out data.

We present the results in terms of frame error rate of max-
imum likelihood (ML) estimation, online and batch large mar-
gin (LM) training and direct error-rate minimization in Table 1.
The results of ML, online LM and batch LM are reproduced
from previous benchmarks [17, 8]. The results show that direct
error-rate minimization reduces the frame error rates across all



Table 1: Frame error rates on the TIMIT test set as obtained
by maximum likelihood (ML) estimation, online and batch of
large margin training, and direct error-rate minimization. The
results in the first three columns are reproduced from previous
benchmarks [17, 8].

# Frame Error Rate (%)
mixtures ML online batch direct error-

LM LM rate min.
1 39.7 30.5 29.5 30.1
2 36.2 29.4 29.0 27.8
4 33.1 28.3 28.4 27.0
8 30.7 27.3 27.2 26.4

16 29.5 27.3 - 26.3
32 29.9 27.6 - 26.7

model sizes except for a single mixture, where the large margin
batch is better. This suggest that the optimization for the first
mixture didn’t reach the optimum value.

We present result in terms of phone error rate of maxi-
mum likelihood (ML) estimation, minimum classification er-
ror (MCE), online and batch large margin (LM) training and
direct error-rate minimization in Table 2. The results of ML,
MCE, online LM and batch LM are all reproduced from previ-
ous benchmarks [17, 8]. Again the results suggest that direct
error-rate minimization reduces the phone error rates across all
model sizes except for a single mixture, where the large margin
batch is better. These results for are also comparable or better
than previously published benchmarks for batch implementa-
tions of discriminative training on this task [8]. In general, the
frame error rates improve more than the phone error rates; this
discrepancy reflects the fact that we used the frame error rate as
a our error function.

6. Discussion and Future Work
In this paper we proposed a new type of online update to train
CD-HMMs. The update directly minimizes a user-defined er-
ror function, which can be non-convex and non-differentiable,
as long as the expected error function is smooth and differen-
tiable in the set of parameters, such as frame error rate, phone
error rate, and word error rate. We presented a theorem with
a proof sketch, which states that the gradient of the expected
error-function equals to the derivative of the difference between
the two functions of the log of joint probability: one with the
inferred state sequence and the other with the error-adjusted
inferred state sequence. We presented experiments when the
frame error-rate used as the objective error function. The results
suggest that the direct error-rate minimization outperformed all
types of training criteria, including batch LM, except for GMM
with a single mixture per state.

Future work will be focused on using phone error rate as the
objective error function. In the presented experiments we did
not compare our method to MPE. We also defer this important
comparison to future work. Lastly, we would like to check the
efficiency of the proposed training on a large scale tasks.
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