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Abstract
This paper presents a novel algorithm for precise spotting of
plosives. The algorithm is based on a pattern matching tech-
nique implemented with margin classifiers, such as support vec-
tor machines (SVM). A special hierarchical treatment to over-
come the problem of fricative and false silence detection ispre-
sented. It uses the loss-based multi-class decisions. Further-
more, a method for smoothing the overall decisions by sequen-
tial linear programming is described. The proposed algorithm
was tested on the TIMIT corpus, which produced a very high
spotting accuracy. The algorithm presented here is appliedto
plosives detection, but can easily be adapted to any class of
phonemes.

1. Introduction
The plosives consonants (/b/, /d/, /g/, /k/, /p/ and /t/) areunique
among phoneme categories in English since they involve three
distinct stages which are sequential in time [1]:

1. Closure (occlusion)— The articulators totally block the
air-stream and the air pressure increases just behind the
obstruction. For the voiced plosives (/b/, /d/ and /g/),
there is an underlying voicing activity during part of this
stage.

2. Burst — The articulators quickly move away from each
other. An explosive burst of air rushes through the open-
ing, involving energy in most or all of the audible spec-
trum.

3. Transition — Transition segment to the next sound.

Nowadays, The HMM is the predominant acoustic model in
continuous speech recognition systems. Inherently, the HMM
suffers from three basic restrictions [2]: assumption of condi-
tional independence of observations given the state sequence,
features extraction imposed by framed-based observation,and
duration model implicitly given by a geometric distribution.
These restrictions result in a very poor model for plosives,and
hence reduce recognition rates on this important class.

Several schemes have been proposed for special purpose
plosives recognition machines, which were not based on HMM.
Torres and Iparraguirre [3] proposed two knowledge-based clas-
sifiers for identification of Spanish unvoiced stops, which were
designed and tested over a consonant-vowel (CV) context and
resulted in a satisfactory rate of identification. Morris etal. [4]
compared the baseline performance of human perception of the

consonantal place of articulation with the performance of two
automatic speech recognition techniques (Kohonen self orga-
nizing map and Gaussian mixture classifier) on multilingualVC
and CV vocalic transition segments. Ali et al. [5] suggesteda
new set of acoustic features and a knowledge-based acoustic-
phonetic system for automatic recognition of isolated stops,
taken from continuous speech. Lin, Lee and Lin [6] presented
methods for CV alignment of Chinese Mandarin speech, using
fuzzy implication to find the abrupt spectral difference changes
and spectral distance measuring. They reported their system
performance was comparable to that of a human expert, though
this system might fail to handle continuous English speech.

Although there have been some studies on segmenting out,
and recognizing plosive within known patterns of speech (such
as CV, VC, etc.), so far no work has been carried out on accu-
rate segmentation and recognition of plosives in fluent speech.
We propose a two stage scheme to carry out the recognition of
plosives. During the first stage the exact location of the plosive
is spotted, while in the second stage, the plosive is classified as
a specific type, given its location [7]. It may be noted here that
the purpose of the work is to obtain a model for plosives. While
for clean speech the proposed two stage approach may be an
effective scheme for actually recognizing the sound, for noisy
speech a more global approach incorporating all the information
about the speech data may be used, based on this model.

This paper focuses on the problem of precisely spotting the
plosives within fluent speech. Particularly, we are interested in
spotting the plosive burst, since it may serve as an anchor point
to the identification process. Though the plosive transition to
the succeeding phoneme may also be considered a reference
point, it is often hard to spot accurately since the transition may
be blurred. Note that both the burst and the transition are cru-
cial to identification of the plosives for both humans [8] and
machines.

2. Plosives Spotting with SVM
The plosive burst duration can vary from 10 msec to 50 msec,
and its character may not be preserved under time scale modifi-
cations. Thus, when modelling plosives statistically, we must
take into account their dynamic characteristics. One way of
doing so is by constructing a statistical model for each possi-
ble burst length. Another way is by using a single model cor-
responding to the longest burst duration, i.e., 50 msec. The
shorter bursts fit this this model with some possibly irrelevant
data which often is of high energy and may mask the presenece



of the plosive. For this reason it is important that the additional
data be handled statistically by a properly constructed classi-
fier which will make use of the relevant information which is
present in the next sound and ignore the rest.

Let x = (x1 : : : xn)T denote an observation vector con-
sisting of concatenations of acoustic features of several adjacent
frames of speech. The convention adopted in this work was to
have the first frame of the plosive coincide with the end of the
plosive closure, while the remaining frames indicate the plosive
burst, the transition and possibly part of the next phoneme.The
number of frames within the observation vector is chosen to be
fixed in such a way that it covers almost all possible durations of
the plosive bursts. Let us assume that the observed vectors are
drawn independently from a fixed but unknown probability dis-
tribution function,p(x). These vectors lie in ann–dimensional
metric space,X . The metric which is used depends on the type
of acoustic features. A label,y 2 f�1;+1g, is attached to ev-
ery vector inX , according to the conditional distribution func-
tion p(y j x), where+1 is assigned to vectors representing
plosives, and�1 for all other vectors.

The problem addressed by this work is to find a function
(classifier)f(x) 2 F in such a way that the sign off(x) esti-
matesy. The choice of the correct function should be based on
a training set ofm independent, identically distributed observa-
tions drawn according top(x; y) = p(y j x)p(x):(x1; y1); : : : ; (xm; ym): (1)

The training set contains examples of both plosives and all other
phonemes, including transitions between phonemes which are
not plosives.

One approach to classifying with some irrelevant features
is theempirical risk minimization(ERM) principle: choose a
functionf(x) fromF , which minimizing theloss, L(y; f(x)),
between the labely of a given vectorx and f(x), as is of-
ten done in the classic learning methods. Another approach is
thestructural risk minimization(SRM) principle, which prefers
functions that minimize both the loss and theVC dimension(cf.
[9]). Thesupport vector machine(SVM) is a classifier designed
to achieve the SRM goal. In this approach the generalization
ability (smoothness) of the classifier is balanced out against its
ability to fit the specific data.

To construct a SVM we map the original observations into
some Hilbert space using a non-linear mapping, and then find
an optimal decision hyperplane in that space. The non linear
mapping may be chosen in a way which allows the decision
functionf(x) to be described in the original feature spaceX by
means of the hyperplane defined by� in the following manner
[9]. f(x) = mXi=1 yi�i � k(x;xi) + b; (2)

wherex is a new vector to be examined,k is a positive definite
symmetric function, which calledthe kernel, andxi are the el-
ements from the training set.�i andb can be found using the
following quadratic programming problem:max� mXi=1 �i � 12 mXi;j=1�i�jyiyj � k(xi;xj) (3)

subject to 0 � �i � C; i = 1; : : : ; l
and

mXi=1 �iyi = 0: (4)

C is the trade-off between training error andyf(x), which
calledthe margin.

The Gaussian kernel turns out to be a convinient choice.k(xi;xj) = e�kxi�xjk=�2 ;
This adds two more parameters to be adapted namely� andC.
These parameters are set iteratively, using the method suggested
recently by Chapelle and Vapnik [10].

The results of the plosive spotting with the above method
are presented in section 5 with detailed comments. Attention
should be drawn to the fact that detection of fricatives and si-
lences as plosives was common (see Table 2). In addition, mul-
tiple detections of the same plosive occured frequently. The for-
mer is handled by thehierarchicaldecision method described in
the next section, and the latter is handled bysequential decision
smoothingdescribed in section 4.

3. Hierarchical spotting of plosives
Fant [1] had observed that after the plosive’s burst a short frica-
tive sometimes appears. This may explain the detections of
fricatives as plosives. The false detections of silences isproba-
bly due to their similarity to the plosive’s closure.

We add two classifiers: one which discriminates between
fricatives and plosives and another one which discriminates be-
tween silences and plosives. One way to combine the three clas-
sifiers is to declare a plosive to have occured only if all classi-
fiers (plosives versus all, plosives versus fricatives and plosives
versus silences) agree that a plosive had occured. We call itthe
“logical-and” decision.

Let us describe this new setting as a pseudo multi-class
problem with four classes (plosives, fricatives, silencesand “all
other phonemes”) but with a binary decision (plosives or not).
A general point of view for the multi-class problem was sug-
gested by Allwein, Schapire and Singer [11] and Crammer and
Singer [12]. The idea is to associate each classr with a row of a
coding matrixM 2 f�1; 0;+1gk�l, wherek is the number of
classes andl is the number of classifiers involved. Each column
ofM describes a binary hypothesisfi, for which +1 and -1 indi-
cate the labels of the classes involved, and 0 indicates we don’t
care how hypothesisfi categorizes examples from this class.

The setting of the coding matrixM of our problem is as
follows: M = 0B� +1 +1 +1�1 �1 0�1 0 �1�1 0 0 1CA ;
where the first column corresponds to the classifier of plosives
versus all other phonemes (including fricatives and silences),
the second column corresponds to the classifier of plosives ver-
sus fricatives (we don’t care about silences and other phonemes)
and the third column corresponds to the classifier of plosives
versus silences (we don’t care about fricatives and all other
phonemes).

The decision rule, based on the coding matrix, is computed
as follows. LetM(r) denote the rowr ofM, and letf(x) 2 F l
be the vector of the classifier results of a test instancex. We
associate the labelr to x in the following way [11]:argminr d(M(r); f(x)); (5)

for some distanced.



One way of choosingd is asHamming distance, that is
counting up the number of positions in which the sign of the
vectorf(x) differs from the rowM(r), respectively.

Another approach of choosingd, the loss-based approach,
is to setd as the total loss of the proposed classr. This ap-
proach is preferred, because it exploits the classifier’s level of
confidence in the prediction:d(M(r); f(x)) = mXi=1 L(M(r; i); fi(x)): (6)

Note that the loss for SVM is [13]:L(y; f(x)) = maxf1� y � f(x); 0g; (7)

therefore:argminr mXi=1maxf1�M(r; i) � fi(x); 0g: (8)

Empirical comparison between all the hierarchical methodspre-
sented above can be found in section 5.

4. Sequential Decision Smoothing
In order to overcome multiple detections of the same plosive,
we post-process the decisions vector. The idea is to work with
a window of lengthnw, which is much larger than the length
of the observation vector,n. The smoothing is based on some
optimization with constraints over this window. Some possi-
ble constraints could be derived, for example, from bounds on
the minimal time period between two consecutive plosives, the
maximal duration of plosives or the permitted number of detec-
tions per window.

We used the following constraint: “leave only the first de-
tection within the window and ignore all other detections”.nw
was taken to be2n, that is, the window included at most one
plosive.

Let fŷignwi=1 be the individual decisions making up the de-
cisions vector. We state the optimization problem as follows:maxfŷig nwXi=1(nw � i)(1 + ŷi) (9)

subject to
nwXi=1(1 + ŷi) � 2;

and ŷi 2 f�1;+1g: (10)

This optimization problem can be solved using integer program-
ming techniques.

5. Results
We used the TIMIT corpus to build the training sets for the
three classifiers, since it has time-aligned phonetic transcrip-
tions. The training sets included 12200 plosives, 10000 frica-
tives, 2800 silences and 65000 other phonemes. Each entry in
each of the training set was a vector of acoustic features con-
catenation of several frames. The acoustic features were the first
coefficients of the MFCC plus the log energy, based on ETSI
standard for distributed speech recognition front-end [14].

Table 1 summaries the set of features for each classifier.
The last row indicates the number of MFCC coefficients per
single frame (including the log energy). We selected high time-
resolution frame lengths (5 msec) and low frequency-resolution

Table 1:Set of features of each classifier.

plosives plosives plosives

vs. all vs. fricatives vs. silences

frames per vector 8 4 8

frame length [msec] 5 10 5

frame shift [msec] 5 5 2.5

MFCC per frame 5 10 5

(first 5 MFCC) for discrimination of plosives against all other
phonemes, since it should capture the sudden temporal changes
of the plosive burst. Though, when discriminating plosivesfrom
fricatives we preferred lower time-resolution (10 msec) and
higher frequency-resolution (first 10 MFCC) to avoid recogni-
tion of abrupt changes within the fricative as the plosive burst.
Slightly more careful treatment is needed for distinguishing plo-
sives from silence features, where we added 50% frame shifting.

We defineinsertionsas the percentage of the number of
false frame detections relative to the number of all non-plosives
frames. We also definedeletionsas the number of miss-detected
plosives relative to the total number of plosives. Note thatthe
decisions were taken per frame, and we allowed deviation of
two frames (10 msec) from the TIMIT segmentation for the de-
cision to be counted as correct.

We compared the detection error rate for all methods pre-
sented above using a DET curve [15]. The detection line was
created by varying a threshold on the functionf(x) of each of
the margin classifiers involved.

The results for the TIMIT core test set are presented in Fig-
ure 1, for each of the hierarchical method described above, and
after sequential smoothing. For comparison, we placed on the
figure the detection error rate of a commercial large vocabulary
continuous parameter HMM system with 3000 context depen-
dent states and 10 components per state trained on 500 hours
of speech (not TIMIT) operating as phonetic classifier with the
same method of error computation described above.

We present in Table 2 the distribution of insertions among
phoneme classes. The analysis corresponds to a point on the
DET curve with deletion of 1.2% and insertion 2%, with neither
hierarchical improvements nor with sequential smoothing.

Table 2:Insertions distribution among phoneme classes (at the
detection point with deletion of 1.2% and insertion 2%).

Phoneme class Insertions [%]

silences 34

fricatives 28

vowels 23

glides 7

nasals 6.5

affricates 1.5

It appears that the hierarchical method outperform the plain
classification setup, especially for insertions. This seems rea-
sonable since we added two classifiers which handle specifically
the most problematic insertions.
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Figure 1:Detection error tradeoff curves of plosive spotting for
different decision methods.

6. Discussion
We presented an algorithm for accurate spotting of the plosives
which was based on large margin classifiers, such as the SVM.
We showed a method to reduce the false-alarms (insertions) by
treating the multi-class problem, and making hierarchicaldeci-
sions. Finally, we introduced the smoothing of the decisions by
integer programming.

Further research should be carried out on integration of the
plosive segmentation system presented here and one of the plo-
sive classification systems presented in the introduction into one
system. Furthermore, the system presented here is for plosives,
but can easily be adapted to any class of phonemes.

The experimental results show that the accuracy of spotting
the plosives using these methods is very high, compared to an
HMM based recognizer, and indicates a great potential to im-
prove the HMM based systems. This can be done, for example,
by forcing the the Viterbi search to pass at plosives states when
found.
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