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1 Optimizing the Measure of Performance

Joseph Keshet joseph.keshet@biu.ac.il

Bar-Ilan University

Ramat-Gan, Israel

The ultimate objective of discriminative learning is to train a system to

optimize a desired measure of performance. In binary classification we are

interested in finding a function that assigns a binary label to a single object,

and minimizes the error rate (correct or incorrect) on unseen data. In

structured prediction, we are interested in the prediction of a structured label,

where the input is a complex object. Typically, each structured prediction

task has its own measure of performance or evaluation metric, such as word

error rate in speech recognition, the BLEU score in machine translation

or the intersection-over-union score in object segmentation. In the chapter

we review different objective functions for structured prediction and analyze

them in the light of how they optimize to the desired measure of performance.

Keywords: structured prediction; evaluation metric; measure of performance;

support vector machines; conditional random fields; direct loss minimization;

Perceptron

1.1 Introduction

We begin by posing the structured learning setting. We consider a supervised

learning setting with input objects x ∈ X and target labels y ∈ Y. The

labels may be sequences, trees, grids, or other high-dimensional objects with

internal structure. We assumed a fixed mapping φ : X × Y → Rd from the

set of input objects and target labels to a real vector of length d. We call

the elements of this mapping feature maps or feature functions.

Here we consider a linear prediction rule with parameters w ∈ Rd, such
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that ŷw is a good approximation to the true label of x, as follows:

ŷw(x) = argmax
y∈Y

w>φ(x,y) (1.1)

Ideally, we would like to find w such that the prediction rule optimizes

the expected desired measure of preference or evaluation metric on unseen

data. For example, phone error rate or word error rate in automatic speech

recognition, intersection-over-union (PASCAL VOC) in object segmenta-

tion, NDCG in search engines and BLEU score in machine translation. We

define a cost function, `(y, ŷw), to be a non-negative measure of error when

predicting ŷw instead of y as the label of x. Our goal is to minimize this

function. Often the desired evaluation metric is a utility function that needs

to be maximized (like BLEU, NDCG) and then we define the cost to be 1

minus the evaluation metric.

We assume that there exists some unknown probability distribution ρ over

pairs (x,y) where y is the desired output (or reference output) for input x.

We then want to set w so as to minimize the expected cost, or the risk, for

predicting ŷw,

w∗ = argmin
w

E(x,y)∼ρ[`(y, ŷw(x))]. (1.2)

This objective function is hard to minimize directly since the distribution ρ

is unknown. We use a training set S of m examples that are drawn i.i.d. from

ρ, S = {(x1,y1), . . . , (xm,ym)}. We replace the expectation in (1.2) with a

mean over the training set. To avoid overfitting of the parameters w to the

training set and to generalize over unseen test data, we add a normalization

factor ‖w‖22 that should reduce the capacity, or the VC dimension, of the

parameters w (Vapnik, 2000).

The cost is often a combinatorial non-convex quantity, which is hard to

minimize. Hence, instead of minimizing the cost directly, we minimize a

lightly different function called a surrogate loss, denoted ¯̀(w,x,y), and

closely related to the cost. Overall the objective function of (1.2) transforms

into the following objective function:

w∗ = argmin
w

1

m

m∑
i=1

¯̀(w,xi,yi) +
λ

2
‖w‖2, (1.3)

where λ is a trade-off parameter between the loss term and the regulariza-

tion.

One way to formalize what is meant by saying that a learning algorithm is

able to learn and optimize a cost function is the notion of strong consistency.

This notion requires that for all distributions ρ on (x,y), and for any feature
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map (finite or infinite dimensional), the weight vectors w∗ produced by (1.3)

satisfies

lim
m→∞

1

m

m∑
i=1

¯̀(w∗,xi,yi) = inf
w

E(x,y)∼ρ[`(y, ŷw(x))], (1.4)

with probability one over the draw of the infinite sample.

We now review the different approaches to estimating the parameters w,

each with a different surrogate loss function.

1.2 Structured Perceptron

The seminal paper of Collins (2002) set the framework of structured pre-

diction. It proposed an extension to the binary Perceptron algorithm to

handle part-of-speech tagging. Perceptron is an online algorithm that works

in rounds. At each round the algorithm receives an instance x and predicts

a label ŷ. Then the target label is given, y, and the algorithm updates the

weight vector w. Starting with w0 = 0, after each round the algorithm out-

puts a weight vector wt. The weight vector after round t, wt+1, is defined

as follows where (xt,yt) is drawn from the distribution ρ

wt+1 = wt + φ(xt,yt)− φ(xt, ŷwt
) (1.5)

Note that whenever ŷwt
= yt then no update is made and we have wt+1 =

wt. If ŷwt
6= yt then the update changes the parameter vector wt+1 in a

way that favors yt over ŷwt
.

In the online setting only the weight vector of each round wt and its

performance on the next (unseen) object xt+1 are of interest (there is no

“test set”). In this chapter, however, we are interested in the batch setting,

that is, in a single weight vector w∗ that perform well on unseen data

sampled from ρ.

The Perceptron algorithm is often described as a technique to solve a

linear feasibility problem, that is aimed at satisfying a set of linear constrains

(with no objective). Each constraint corresponds to a training example and

asserts its correct prediction. If there is a weight vector w∗ that satisfies

all constraints, it can be shown that running iteratively over the data

and update the weight vector wt+1 using (1.5) converges, and the number

of updates is finite (Collins, 2002). In that case we can use the weight

vector of the last round wT to serve as w∗, and we say that the data is

linearly separable. When there no such w∗ exists, we can convert the online

Perceptron to a batch algorithm by setting w∗ to the average of the weight
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vectors over all iterations (Dekel et al., 2004; Cesa-Bianchi et al., 2004).

We can think of the Perceptron algorithm as a stochastic sub-gradient

descent (SSGD) solution of the following optimization problem1

w∗ = argmin E(x,y)∼ρ

[
w> (φ(x, ŷw(x))− φ(x,y))

]
. (1.6)

Using SSGD with a constant learning rate brings us to the update rule of

(1.5). This optimization problem (1.6) is non-convex. From our perspective,

however, a bigger problem is that the optimization problem defined by

(1.6) is quite different from (1.2): the optimization problem (1.6) is defined

independently of the cost function and therefore cannot be expected to yield

good solutions to (1.2) when the data is not linearly separable.

1.3 Large Margin Structured Predictors

The idea is to generalize the hinge loss function used in binary support

vector machines (SVMs) to the structured case. The first formulation was

introduced by Taskar et al. (2003) and it is called max-margin Markov

networks (M3), where the generalized surrogate loss function is expressed in

terms of the Hamming distance between the target label y and the predicted

label ŷw. Denote by H(y, ŷw) the Hamming distance between y and ŷw.

The M3 can be formulated by using the following Hamming hinge loss as a

surrogate loss in the optimization function (1.3):

¯̀
hamming(w,x,y) = max

ŷ∈Y

[
H(y, ŷ)−w>φ(x,y) +w>φ(x, ŷ)

]
(1.7)

The use of Hamming hinge loss function can be motivated as being a direct

extension of the binary SVM. Consider the case where Y = {−1,+1} so y ∈ Y

is a scalar, and y = −ŷw. Set φ(x,y) = 1
2yψ(x), where ψ : X→ Rd. In the

binary case, the Hamming distance is reduced to the 0-1 error function,

H(y, ŷw) = 1[y 6= ŷw], therefore

max
ŷ∈Y

[
H(y, ŷw)−w>φ(x,y) +w>φ(x, ŷ)

]
= max{0, 1−yw>ψ(x)}, (1.8)

which is the binary hinge loss function.

We can also justify the use of the Hamming hinge loss as a surrogate

loss function from generalization bounds, which were given by Taskar et al.

(2003) and by McAllester (2006). In particular, consider the following gen-

1. Personal communication with David McAllester.
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eralization theorem stated in (McAllester, 2006, Theorem 62):

Theorem 1.1. Assume that 0 ≤ `(y, ŷ) ≤ 1. With probability at least

1 − δ over the draw of the training set S of size m, the following holds

simultaneously for all weight vectors w

E(x,y)∼ρ[`(y, ŷw(x))]

≤ 1

m

m∑
i=1

max
ŷ

1
[
w>φ(xi,yi)−w>φ(xi, ŷ) ≤ H(yi, ŷ)

]
`(yi, ŷ)

+
‖w‖2

m
+

√√√√‖w‖2 ln
(

2dm
‖w‖2

)
+ ln

(
m
δ

)
2(m− 1)

, (1.9)

where 1[π] denotes the indicator function: 1[π] = 1 if the predicate π is true

and 0 otherwise.

This generalization bound provides a rationalization of the use of Ham-

ming hinge loss as a surrogate loss when the conditions w>φ(xi,yi) −
w>φ(xi, ŷ) ≤ H(yi, ŷ) hold for all 1 ≤ i ≤ m. Similar rationalization

can be derived from the bounds stated by Taskar et al. (2003).

Another formulation of large margin structured predictors is called struc-

tural SVM and was introduced by Tsochantaridis et al. (2005) with two

variations. The first variation is called margin-scaled and is aimed at mini-

mizing the following surrogate loss

¯̀
margin(w,x,y) = max

ŷ∈Y

[
`(y, ŷ)−w>φ(x,y) +w>φ(x, ŷ)

]
. (1.10)

The second variation is called slack-scaled, and aimed at minimizing the

following surrogate loss

¯̀
slack(w,x,y) = max

ŷ∈Y
`(y, ŷ)

[
1−w>φ(x,y) +w>φ(x, ŷ)

]
(1.11)

Both of those surrogate loss functions are justified as being convex upper

bounds on the cost function. For the margin-scaled hinge loss we have

`(y, ŷw) = `(y, ŷw)−w>φ(x,y) +w>φ(x,y) (1.12)

≤ `(y, ŷw)−w>φ(x,y) +w>φ(x, ŷw) (1.13)

≤ max
ŷ∈Y

(
`(y, ŷ)−w>φ(x,y) +w>φ(x, ŷ)

)
(1.14)

≤ ¯̀
margin(w,x,y) (1.15)

where we used the definition of ŷw in (1.1) for bounding (1.12) by (1.13).

Likewise, a similar upper-bound can be derived for the slack-scaled hinge
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loss. The upper bound convert the optimization problem (1.3) to a convex

problem, which is of great technical and theoretical advantage. However, we

are unaware of a guarantee that ensures that minimizing the convex upper-

bound ¯̀
margin or ¯̀

slack also minimizes the cost `. This type of guarantees

are often given in the analysis of approximation algorithms in terms of a

multiplicative factor times the minimal objective, but we are unaware of

any such result for the hinge loss.

The weight vector w can be found by several optimization techniques.

The use of SSGD to solve (1.3) will help us to compare the update rule of w

of different methods. On iteration t we choose a random training example

(xjt ,yjt) by picking an index jt ∈ {1, . . . ,m} uniformly at random. Then

we replace the objective in (1.3) where the surrogate loss is ¯̀
margin with an

approximation based on the training example (xjt ,yjt). The sub-gradient of

approximated objective is given by

∇t = φ(xjt , ŷ
`
wt

)− φ(xjt ,yjt) + λwt (1.16)

where

ŷ`wt
= argmax

y∈Y
w>t φ(xjt ,y) + `(yjt ,y) (1.17)

We call this type of inference loss augmented inference. Hence the we have

following update rule:

wt+1 = (1− ηtλ)wt + ηt

(
φ(xjt ,yjt)− φ(xjt , ŷ

`
wt

)
)

(1.18)

There are two main differences between the large margin algorithms and the

“batch” Perceptron algorithm, namely, the regularization and the margin,

Those differences can be seen by comparing the SVM update rule in (1.18)

to the Perceptron update in (1.5). Note that similar derivation can be used

to find the update rule of the slack-scaled loss function and of the Hamming

loss function.

We would like to finish this section with a short discussion on consistency

of the hinge loss functions. The large margin structured predictors are not

consistent in the sense of (1.4), that is, they fail to converge on the optimal

linear predictor even in the limit of infinite training data. It was shown (Lee

et al., 2004) that the use of hinge loss in multiclass classification results

in inconsistent algorithms. This claim can be extended to prove that the

structural hinge losses are also inconsistent (McAllester, 2006).
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1.4 Conditional Random Fields

Conditional random fields (CRFs) that were proposed by (Lafferty et al.,

2001) are models which use the negative log-likelihood loss (“log loss”)

function as a surrogate loss function in (1.3), that is

¯̀
log(w,x,y) = − lnPw(y |x) (1.19)

where

Pw(y |x) =
1

Zw(x)
exp

{
w>φ(x,y)

}
(1.20)

and Zw(x) is the partition function defined as

Zw(x) =
∑
y′∈Y

exp
{
w>φ(x,y′)

}
. (1.21)

This defines a convex optimization problem. With SSGD the update rule

for an example jt is

wt+1 = (1− ηtλ)wt+ ηt

(
φ(xjt ,yjt)−Ey′∼Pw(y′ |x)

[
φ(xjt ,y

′)
] )
. (1.22)

where

Ey′∼Pw(y′ |x)

[
φ(xjt ,y

′)
]

=
∑
y′∈Y

Pw(y′ |x)φ(xjt ,y
′). (1.23)

Given a conditional probability model Pw(y |x), when w is found accord-

ing to (1.22), one could use decision-theoretic prediction defined as follows

ŷw(x) = argmin
ŷ

Ey∼Pw(y |x) [`(y, ŷ)] (1.24)

If Pw(y |x) equals ρ(y|x) then (1.24) gives an optimal decoding. For ex-

ample, if the cost function is the zero-one loss, `(y, ŷw) = 1[y 6= ŷw], then

from (1.24) we get the Bayes optimal decoder

Pw(y |x) = argmin
y′

Ey∼Pw(y |x)

[
1[y 6= y′]

]
= argmax

y′
P (y = y′|x). (1.25)

However, since the log loss function (1.19) is defined independently of the

cost function `, the optimum of (1.3) with ¯̀
log is not expected to yield good

solutions to (1.2).
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1.5 Direct Loss Minimization

Direct loss minimization is a method focused at directly optimizing the mea-

sure of performance. As we have seen, the most common approaches to struc-

tured prediction, structural Perception, M3, structural SVMs and CRFs, do

not minimize the risk directly. Note that except the structured Perceptron,

all those approaches minimize a convex regularized surrogate loss function.

An alternative to a convex relaxation is to perform SSGD directly on the

objective in (1.2). This is conceptually puzzling in the case where the output

space Y is discrete since the output ŷw is not a differentiable function of w.

In that case the gradient of the risk ∇wE[`(y, ŷw(x))] does not equal to

the expected gradient of the cost E[∇w`(y, ŷw(x))]. However, McAllester

et al. (2010) showed that when the input space X is continuous the gradient

∇wE[`(y,yw(x))] exists even when the output space Y is discrete.

Theorem 1.2. For a finite set Y of possible output values, and for w in

general position as defined in McAllester et al. (2010), we have the following

∇wE(x,y)∼ρ

[
`(y, ŷw(x))

]
= lim

ε→0

E(x,y)∼ρ
[
φ(x, ŷε`w(x))− φ(x, ŷw(x))

]
ε

(1.26)

where

ŷε`w(x) = argmax
ŷ∈Y

w>φ(x, ŷ) + ε `(y, ŷ) (1.27)

and ŷw(x) is defined as in (1.1).

Consider the definition of the gradient of the risk using Frèchet derivative

∆w>∇wE[`(y, ŷw(x))] = lim
ε→0

E [`(y, ŷw+ε∆w(x))− `(y, ŷw(x))]

ε
. (1.28)

for any unit vector ∆w ∈ Rd. The main idea of the proof is to show that

the right hand side of (1.28) equals the right hand side of (1.26). This can

be shown as follows. Express the expectation of the right hand side of (1.26)

as a surface integral over the decision boundary, when this boundary is with

respect to the score of switching the label from ŷw to ŷε`w. Similarly, express

the expectation of the right hand side of (1.28) as a surface integral over

the decision boundary, when switching the label from ŷw to ŷw+ε∆w. Then,

compare those two integrals analytically. The proof of the theorem is given

in (McAllester et al., 2010).
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Using SSGD, an update rule can be written as follows

wt+1 = wt +
ηt
ε

(
φ(xjt , ŷwt

(xjt))− φ(xjt , ŷ
ε`
wt

(xjt))
)
. (1.29)

This type of update rule moves away from worse labels. In similar fashion,

we can derive an update rule which moves toward better labels and usually

performs better in practice:

wt+1 = wt +
ηt
ε

(
φ(xjt , ŷ

−ε`
wt

(xjt))− φ(xjt , ŷwt
(xjt))

)
. (1.30)

This update was obtained by expressing the gradient in (1.28) with labels

ŷw and ŷw−ε∆w rather than ŷw+ε∆w and ŷw. In practice, ε can be chosen

to be fixed on a held-out development set.

An open problem is how to properly incorporate regularization in the

case where only a finite number of training example is available. It should

be noted that naive regularization with a norm of w, such as regularizing

with λ‖w‖2, is nonsensical as the risk E[`(y, ŷw(x))] is insensitive to the

norm of w. Early stopping may be a viable approach in practice.

1.6 Structured Ramp Loss

One approach to add a regularization term to the direct loss minimization

update rule was proposed by McAllester and Keshet (2011). The idea is to

use structured ramp loss (Do et al., 2008) as a surrogate loss function, which

is defined as follows:

¯̀
ramp(w,x,y) = max

ŷ∈Y

[
`(y, ŷ) +w>φ(x, ŷ)

]
−max
ỹ∈Y

[
w>φ(x, ỹ)

]
. (1.31)

Using this surrogate loss in the optimization problem (1.3) results in a non-

convex optimization problem. Finding the sub-gradient of (1.3) with ¯̀
ramp

and applying SSGD, we get the following update rule:

wt+1 = (1− ηtλ)wt + ηt

(
φ(xjt , ŷwt

(xjt))− φ(xjt , ŷ
`
wt

(xjt))
)
. (1.32)

This update is similar to the direct loss minimization update rule (1.29),

except for the missing ε.

Conceptually, it seems that ‖w‖ in (1.32) serves as 1/ε in the direct loss

update rule: high value of ‖w‖ has the same effect as small ε in (1.29).

According to Theorem 1.2 the sub-gradient of the risk equals the expected

difference in the feature maps when ε approaches zero. For the ramp loss,

on the other hand, it can be shown (McAllester and Keshet, 2011) that

when the norm of w goes to infinity, then the ramp loss approaches the risk.
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The regularization of the structural ramp loss λ‖w‖2 prefer weight vectorsw

with small norms. Those conditions are somewhat contradicting, and it is an

open problem to introduce a better regularization term with the structured

ramp loss.

The structured ramp loss is consistent in the sense that was defined in

(1.4). No convex surrogate loss function, such as log loss or hinge loss,

can be consistent in this sense – for any nontrivial convex surrogate loss

function one can give examples (a single feature suffices) where the learned

weight vector is perturbed by outliers but where the outliers do not actually

influence the optimal cost.

The structured ramp loss in (1.31) corresponds to the “away-from-bad”

direct loss update version. Consider the following variant to the structured

ramp loss:

¯̀′
ramp(w,x,y) = max

ỹ∈Y

[
w>φ(x, ỹ)

]
−max
ŷ∈Y

[
w>φ(x, ŷ)− `(y, ŷ)

]
. (1.33)

The sub-gradient update equation for ¯̀′
ramp defines an update rule corre-

sponds to the “toward good” version of the direct loss minimization. How-

ever, we are unaware of a method for proving consistency for this surrogate

loss function, and the method used in McAllester and Keshet (2011) is not

suitable for this case.

1.7 Structured Probit Loss

We turn now to describe a different approach which is based on the concept

of perturbations of the weight vector w (Keshet et al., 2011). Define the

structured probit loss as follows:

¯̀
probit(w,x,y) = Eε∼N(0,I) [`(y, ŷw+ε(x))] . (1.34)

where ε ∈ Rd is a random vector drawn from the isotropic normal distribu-

tion. Note that the optimization problem (1.3) where the surrogate loss is

the structured probit loss is a non-convex optimization function. Plugging

this loss into (1.3) we have:

w∗ = argmin
w

1

m

m∑
i=1

¯̀
probit(w,xi,yi) +

λ

2
‖w‖2. (1.35)

The sub-gradient of the objective (1.35), approximated with the training
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example (xjt ,yjt) uniformly chosen at random, is given by

∇w
[

¯̀
probit(w,xjt ,yjt) +

λ

2
‖w‖2

]
(1.36)

= ∇w
[
Eε∼N(0,I) [`(yjt , ŷw+ε(xjt))] +

λ

2
‖w‖2

]
(1.37)

= ∇w
[∫

(2π)−d/2e−
1

2
‖ε‖2`(yjt , ŷw+ε(xjt))dε+

λ

2
‖w‖2

]
(1.38)

= ∇w
[
(2π)−d/2

∫
e−

1

2
‖u−w‖2`(yjt , ŷu(xjt))du+

λ

2
‖w‖2

]
(1.39)

= (2π)−d/2
∫

(u−w) e−
1

2
‖u−w‖2`(yjt , ŷu(xjt))du+ λw (1.40)

= (2π)−d/2
∫
ε e−

1

2
‖ε‖2`(yjt , ŷw+ε(xjt))dε+ λw (1.41)

= Eε [ε `(yjt , ŷw+ε(xjt))] + λw. (1.42)

where we changed variables ε = u−w in the transition from (1.38) to (1.39)

and back to u = w + ε in the transition from (1.40) to (1.41). The update

rule is therefore

wt+1 = (1− ηtλ)wt + ηtEε [ε `(yjt , ŷw+ε(xjt))] (1.43)

Practically the expectation over the isotropic normal random noise ε is re-

place with an average of a vector of length d sampled from that distribution.

The following generalization bound was given in (Keshet et al., 2011).

Theorem 1.3. For fixed λ > 1/2 we have that with probability at least 1−δ
over the draw of the training data the following holds simultaneously for all

w

E(x,y)∼ρ[¯̀probit(w,x,y)] ≤ 1

1− 1
2λ

( 1

m

m∑
i=1

¯̀
probit(w,xi,yi)

+
λ

2m
‖w‖2 +

λ ln(1/δ)

m

)
. (1.44)

It is interesting to note that minimizing the right hand side of this bound

with respect to w, using SSGD is identical to the derivation of the update

rule above.

This loss function is found to be consistent in the strong sense as defined

in (1.4) (McAllester and Keshet, 2011). Another advantage of this surro-

gate loss is that the cost function ` does not need to be decomposable as

in structural SVM, direct loss minimization and structural ramp loss. The

decomposability is needed to solve loss-adjusted inference (1.17) using dy-
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namic programming2. This, however, comes with a disadvantage: the need

to infer ŷw+ε(x) many times in order to reliably estimate the expectation

over ε.

An extension of the probit loss to more general distributions of ε was

presented by Hazan et al. (2013), which might correspond to the noise of

the problem. In that case the regularization term in (1.3) is not necessarily

‖w‖2, but rather a function related to the distribution of ε.

1.8 Risk Minimization under Gibbs distribution

While CRFs aim at minimizing the expected negative log likelihood, namely

the log-loss, recall that we are interested in minimizing the risk. It was

proposed by Smith and Eisner (2006) to minimize the risk under the Gibbs

measure. Let us define the structured logit surrogate loss function as the

conditional expectation of the cost, when the expectation is taken with

respect to the Gibbs distribution, Pw(y|x), as is defined in (1.19):

¯̀
logit(w,x,y) = Ey′∼Pw(y′ |x)

[
`(y′,y)

]
=
∑
y′∈Y

Pw(y′|x) `(y′,y). (1.45)

An interesting property of the logit loss `logit is that when the norm of w

approaches infinity then the logit loss converges to the risk.

Theorem 1.4.

lim
α→∞

¯̀
logit(αw,x,y) = `(y, ŷw(x)), (1.46)

where ŷw(x) is defined in (1.1).

This theorem can be easily proven by explicitly expressing the logit loss as

in (1.45). Then split the sum over the labels to the label ŷ and the rest of

the labels, and apply the limit.

This theorem is a only part of whole consistency prove. What left is a

generalization bound similar to (1.44), that makes the connection between

the logit loss and the risk. This is still an open problem.

2. In principle, the decomposability is not always necessary in those methods, as long
as the loss augmented prediction still works, e.g. by branch-and-bound (Blaschko and
Lampert, 2008)
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1.9 Conclusions

In this chapter we compared different surrogate loss functions used by

different algorithms for structured prediction. We presented the concept of

consistency in the strong sense, and showed that no convex surrogate loss

function, such as log loss or hinge loss, can be consistent in this sense. We

showed that some non-convex loss functions lead to consistency, and maybe

superior generalization. We have started to extend the ideas presented here

to train models, such as graphical models and deep neural networks, so as

to optimize the measure of performance on unseen data.
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