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Abstract 

Traces of the cognitive mechanisms underlying speaking can be found within subtle variations in 

how we pronounce sounds. While speech errors have traditionally been seen as categorical 

substitutions of one sound for another, acoustic/articulatory analyses show they partially reflect 

the intended sound. When “pig” is mispronounced as “big,” the resulting /b/ sound differs from 

correct productions of “big,” moving towards intended “pig”—revealing the role of graded 

sound representations in speech production. Investigating the origins of such phenomena requires 

detailed estimation of speech sound distributions; this has been hampered by reliance on 

subjective, labor-intensive manual annotation. Computational methods can address these issues 

by providing for objective, automatic measurements. We develop a novel high-precision 

computational approach, based on a set of machine learning algorithms, for measurement of 

elicited speech. The algorithms are trained on existing manually labeled data to detect and locate 

linguistically relevant acoustic properties with high accuracy. Our approach is robust, is designed 

to handle mis-productions, and overall matches the performance of expert coders. It allows us to 

analyze a very large dataset of speech errors (containing far more errors than the total in the 

existing literature), illuminating properties of speech sound distributions previously impossible 

to reliably observe. We argue that this provides novel evidence that two sources both contribute 

to deviations in speech errors: planning processes specifying the targets of articulation and 

articulatory processes specifying the motor movements that execute this plan. These findings 

illustrate how a much richer picture of speech provides an opportunity to gain novel insights into 

language processing. 

  



Automatic Analysis of Speech Errors 3 

1. Introduction 

The acoustic and articulatory properties of speech vary from moment to moment; if you 

repeat a word several times, no two instances will be precisely the same. Hidden within this 

variation are traces of the cognitive processes underlying language production. For example, 

when repeatedly producing a word, you will tend to slightly reduce its duration—reflecting (in 

part) the ease of retrieving the word from long term memory (Kahn & Arnold, 2012; Lam & 

Watson, 2010). Such effects can also be found at the level of individual speech sounds within a 

word. One such effect can be observed in bilingual speakers’ pronunciations of second language 

speech sounds. Such sounds are more accented when speakers have recently produced a word in 

their native language, relative to cases where the same speaker has just produced sounds in the 

second language (Balukas & Koops, 2015; Goldrick, Runnqvist, & Costa, 2014; Olson, 2013). 

This suggests that the difficulty of retrieving words and sounds when switching languages can 

modulate how sounds are articulated.  

Here, we focus on one source of evidence that has played a key role in theories of 

language production: speech errors (Fromkin, 1971, et seq.). Errors involving the mis-production 

of sounds (“pig” mispronounced as “big”) reveal the graded influence of intended productions on 

articulation. Errors simultaneously reflect acoustic/articulatory properties of both the target and 

error outcome (Frisch & Wright, 2002; Goldrick, Baker, Murphy, & Baese-Berk, 2011; Goldrick 

& Blumstein, 2006; Goldstein, Pouplier, Chen, Saltzman, & Byrd, 2007; McMillan & Corley, 

2010; McMillan, Corley, Lickley, 2009; Pouplier, 2007, 2008). Such effects are consistent with 

theories of language production incorporating continuous, distributed mental representations in 

the cognitive process underlying the planning (Dell, 1986; Goldrick & Blumstein, 2006; 

Smolensky, Goldrick, & Mathis, 2014; Plaut & Shallice, 1993) and articulation of speech sounds 
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(Goldstein, et al., 2007; Saltzman & Munhall, 1989). According to these theoretical perspectives, 

articulation reflects subtle, gradient variation in the representational structures and cognitive 

processes underlying speech (e.g., variation in the degree to which the native language is 

activated can yield graded changes in the degree of accent in non-native speech; partial 

activation of target sounds can influence how errors are articulated).       

While studies of phonetic variation have provided a rich source of information about 

language processing, most researchers have relied on manual annotation to obtain accurate data. 

This approach suffers from two critical flaws. It is highly resource intensive; a single experiment 

in our lab (Goldrick et al., 2011) required over 3,000 person-hours for analysis. With respect to 

speech error studies (as discussed below), this has prevented researchers from obtaining the data 

required to reliably evaluate different hypotheses. Second, this approach is fundamentally 

subjective: manual labels reflect the judgments of annotators. This presents a barrier to 

replication.  

Recent studies have aimed to address these issues through computational methods that 

automatically measure acoustic properties of speech (e.g., Gahl, Yao, & Johnson, 2012; Labov, 

Rosenfelder, & Freuhwald, 2013; Yuan & Liberman, 2014). These methods eliminate subjective 

judgments while enormously reducing the resources required for analysis. Although this has 

provided great advances in studies of phonetic variation, existing methods do not provide a 

comprehensive solution. They have not provided the fine granularity of measurement necessary 

to reliably measure differences at the level of individual speech sounds (specifically, consonant 

sounds). Furthermore, these existing methods require a complete transcription of the observed 

speech prior to phonetic analysis. This is a major burden, particularly for paradigms that are 

designed to produce tremendous variation in production (e.g., speech errors). 
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In this work, we propose a novel computational framework for automatic analysis of 

speech appropriate for evaluating hypotheses relating to the phonetics of speech errors. This is 

based on a set of algorithms in machine learning (Keshet, Shalev-Schwartz, Singer, & Chazan, 

2007; McAllester, Hazan, & Keshet, 2010; Sonderegger & Keshet, 2012). Our automatic 

approach matches the performance of expert manual coders and outperforms algorithms used in 

the existing psycholinguistic literature. The analyses reveal novel properties of the phonetics of 

speech errors. Furthermore, we show (via a power analysis) that reliable investigation of the 

properties of individual speech sounds requires datasets larger than those used in previous work. 

These findings show how automatic analysis creates an opportunity to gain a much richer, 

objective, and replicable picture of acoustic variation in speech. 

 

1.1 Phonetic Variation in Sound Substitution Errors 

One key source of evidence for the structure of the cognitive mechanisms underlying 

language production is speech errors (Fromkin, 1971). Sound substitution errors (e.g., intending 

to say bet, but producing pet; written as bet!pet) have been studied in the laboratory by asking 

participants to rapidly produce artificial tongue twisters composed of syllables with alternating 

contrasting sounds (pet bet bet pet; Wilshire, 1999). Based on transcriptions of speech, it was 

long assumed that such errors reflect the categorical substitution of one sound for another (Dell, 

1986; Fromkin, 1971; Shattuck-Hufnagel & Klatt, 1979). However, more recent quantitative 

analyses of the phonetic (acoustic/articulatory) properties of errors have revealed that errors 

systematically differ from corresponding correct productions—a deviation that reflects properties 

of the intended sound (Frisch & Wright, 2002; Goldrick et al., 2011; Goldrick & Blumstein, 

2006; Goldstein, et al., 2007; McMillan & Corley, 2010; McMillan, Corley, Lickley, 2009; 
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Pouplier, 2007, 2008). For example, an important acoustic cue to the distinction between words 

like pet and bet is voice onset time (VOT), the time between the release of airflow (e.g., opening 

the lips) and the onset of periodic vibration of the vocal folds (Lisker & Abramson, 1964). In 

English, voiceless sounds like /p/ have relatively long VOTs whereas voiced sounds like /b/ have 

short VOTs (Lisker & Abramson, 1964). In a bet!pet error, the resulting /p/ sound is distinct 

from correct productions of the same sound (pet!pet). The error /p/ tends to have a shorter 

VOT—which makes it more similar to the intended sound /b/. The complementary pattern is 

found for errors like pet!bet; the error /b/ tends to have a longer VOT than the corresponding 

sound in bet!bet. Note that similar effects are found in non-errorful speech when a competitor 

word is explicitly primed (e.g., priming top while reading the word cop aloud yields a blend of /t/ 

and /k/ articulations; Yuen, Davis, Brysbaert, & Rastle, 2010) 

These deviations have been attributed to one of two distinct types of cognitive processes 

that underlie the production of speech: (i) planning processes that construct a relatively abstract 

specification of the targets of articulation; or (ii) articulatory processes that specify the specific 

motor movements that execute this plan. To illustrate this division, when producing pet, planning 

processes might specify that the initial sound is /p/ but not the precise timing of the associated lip 

movements; these would be specified during articulatory processing. Below, we outline how 

different theories have proposed that deviations of errors from correct productions arise at each 

level of processing. 

Within planning processes, many theories of speech production assume that 

representations are patterns of activation over simple processing units (Dell, 1986). For example, 

the contrast between big and pig is represented by graded patterns of activation over units 

representing speech segments /p/ and /b/. While this type of representation can express arbitrarily 
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varying combinations of /p/ and /b/, theories typically incorporate mechanisms that constrain the 

patterns of activation. These mechanisms force planning processes to select relatively discrete 

representations for production (e.g., primarily activating /p/, with little activation of /b/). A 

variety of mechanisms have been proposed to account for this, including: boosting activation of 

one representation relative to alternatives (e.g., Dell, 1986); lateral inhibition that reduces the 

activation of alternative representations (see Dell & O’Seaghdha, 1994, for a review); and 

attractors over distributed representations (e.g., Goldrick & Chu, 2014; Plaut & Shallice, 1993; 

Smolensky et al., 2014). However, these constraints on activation are typically not categorical; 

while one unit may be highly active, others may remain partially active. This has been proposed 

as one possible mechanism for producing deviations in speech errors. If the specification of the 

intended target sound remains partially active, the phonetic properties of the error could be 

distorted towards the intended target (Goldrick & Blumstein, 2006; Goldrick & Chu, 2014; 

Smolensky et al., 2014). For example, in bet!pet, the speech plan could specify the target is 0.9 

/p/ and 0.1 /b/—resulting in articulations that combine properties of both sounds.  

Articulatory processes could provide an additional source of distortions in speech errors. 

Such processes specify the continuous, coordinated dynamics of articulator movements that 

execute the speech plan (Saltzman & Munhall, 1989). Tongue twisters require speakers to 

rhythmically alternate different configurations of speech gestures (e.g., altering the relative 

timing of lip opening and glottal movement for /p/ vs. /b/). Research across a variety of domains 

of action has suggested that alternating different movements is inherently less dynamically stable 

than repeating synchronous actions. When participants are asked to perform alternating 

movements under varying response speeds, they spontaneously shift from successful alternation 

to synchronized movements at fast rates (Haken, Peper, Beek, & DaVertshofer, 1996). If speech 
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errors in tongue twisters reflected, in part, a similar process—a destabilization of articulation of 

alternating movements under fast rates—we might expect a similar pattern to emerge. The 

synchronous production of previously alternating sounds would manifest as a blend of properties 

of the error and the intended target, providing a second possible mechanism for producing 

deviations in speech errors (Goldstein et al., 2007, Pouplier, 2007). 

Evaluating these two approaches to deviations in errors has been hampered by the 

relative paucity of phonetic data. For example, studies arguing for an articulatory locus of 

deviations have often induced errors using repeating sequences (pet bet pet bet; e.g., Goldstein et 

al., 2007). In contrast, studies arguing for a planning locus have often used twisters where the 

order of pairs of syllables switches within a twister (pet bet bet pet; e.g., Goldrick & Blumstein, 

2006). Transcription studies suggest that the difference between these two twister types exerts a 

significant influence on processing (Croot, Au, & Harper, 2010; Wilshire, 1999). Across studies, 

relative to twisters using repeated syllables sequences, twisters that switch the order of syllables 

result in higher errors at points where the order of syllable switches (i.e., the first and third 

positions in a sequence; pet bet bet pet). While multiple transcription studies have examined this 

issue, phonetic studies have not. This likely reflects the high cost of analyzing phonetic data; 

comparison of syllable orders within items and participants requires collecting twice the amount 

of data as any single paradigm. The consequence of this methodological divergence has, as of 

yet, been unexamined. Developing a more efficient means of gathering phonetic data could allow 

us to bridge results across these two types of studies.  

The paucity of phonetic data has also constrained the types of measures that can be 

examined. While many studies have examined shifts in the mean properties of errors vs. correct 

productions (e.g., the typical size of deviations away from canonical /b/, towards the intended 
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/p/), the processing conditions that give rise to speech errors might also influence other 

distributional properties of productions—in particular, errors might exhibit a different degree of 

variability than correct productions. The difficulty of production processing may influence 

phonetic variability. For example, Heisler, Goffman, and Younger (2010) found that children 

produced novel sound sequences with higher articulatory variability when the strings were not 

paired with a lexical referent. If participants learned that the sequence was the label for an object, 

articulation became less variable. However, previous work has not examined whether the 

processing difficulties that give rise to speech errors in adults might also influence the variability 

of articulation. This likely reflects the high cost of analyzing phonetic data; the proper 

assessment of the variability of errors relative to correct productions1 requires a large number of 

observations from a substantial number of participants. Each participant must produce a 

significant number of observations within each condition in order for us to reliably assess the 

distributional properties of their errors and correct productions. Then, to assess whether such 

distributional properties are reliably different, we must compare measures across a number of 

participants. Analyses of this type therefore require a substantial decrease in the cost of gathering 

phonetic data. 

 

                                                             
1 Although the variability of correct vs. error productions has not been contrasted, note that 
previous work has examined overall variability of productions across conditions (McMillan et 
al., 2009; McMillan & Corley, 2010). 
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1.2 Automatic Analysis of Speech 

 
Figure 1. Schematic for automatic analysis of elicited speech. Recorded speech is aligned to a 
transcript, dynamically selected from a set of possible transcripts (allowing for deviations from 
the target production—mispronunciations, omitted syllables). These alignments are used to 
determine windows within which linguistically relevant acoustic properties are measured. 
 

To address the problems associated with limited amounts of speech data, we propose a 

new approach to the automatic analysis of speech error data. We formulate the general problem 

as speech sound measurement in studies where speech is elicited by a prompt specifying a target 

utterance. The objective is to take recordings of such utterances and output an accurate 

measurement of specific, linguistically relevant dimensions of the acoustic signal (phonetic 

parameters).  As outlined in Figure 1, we approach this problem by first identifying the relevant 

regions of the acoustic signal for phonetic analysis, and then automatically measuring some 

linguistically relevant acoustic properties (Section 2 provides full implementation details).  

Each of the boxes in Figure 1 corresponds to a learning algorithm that was specially 

designed to solve the task of phonetic parameter measurement and to minimize the error in the 

algorithm’s prediction for these measures. Unlike problems of classification or regression where 

the input is a fixed length feature vector and the output is a single bit (such as “grammatical” vs. 

“not grammatical”) or a real number (such as a pitch value), respectively, the input to each of the 

tasks represented by the boxes in Figure 1 is a structured object (e.g., a variable length acoustic 

signal), as is the output (e.g., an alignment between phoneme sequences and regions of the 

acoustic signal; phonetic parameter measurement for particular regions of the acoustic signal).  
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Structured prediction refers to machine learning models that predict relational 

information that has structure such as being composed of multiple interrelated parts. A structured 

prediction algorithm maps the input object along with the target output object into a feature 

vector space. The algorithm distills to a classifier in this vector space, which is trained to predict 

the target output object. The classifiers used in this work are based on the large margin concept, 

meaning that they are trained to separate the target output object from all other output objects 

with some confidence called margin. This allows the trained model to account for perturbations 

in the vectors in feature vector space due to noise in the speech signal (Crammer, Dekel, Keshet, 

Shalev-Shwartz, & Singer, 2006). The classifier’s confidence can be used to identify noisy input 

to the classifier or poor classification results, as detailed in Section 2.4. 

In contrast to the standard approaches that have been developed for binary classification, 

each structured prediction task is distinctive: it has a unique evaluation metric, its own set of 

feature functions, and in many cases requires a non-standard procedure for predicting the target 

object from an input object, given a set of trained parameters. An overview of our approach is 

provided in Figure 1. The first box in Figure 1 is a structured prediction algorithm (Keshet et al., 

2007, McAllester et al., 2010) that automatically aligns the transcription of the utterance at the 

level of individual speech sounds (phonemes) with the corresponding portions of the recorded 

acoustic signal. In contrast to standard existing approaches (Gahl et al., 2012; Labov et al., 2013; 

Yuan & Liberman, 2014), this transcription is dynamically generated: the target utterance is used 

to generate several possible transcriptions, allowing for deletion or addition of syllables and 

mispronunciation of key segments. This eliminates a substantial manual step required by 

previous approaches. The transcription that best aligns with the recorded acoustics is then used to 

determine analysis windows for measurement of phonetic parameters.  Our state-of-the-art 
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phoneme alignment algorithm has two advantages relative to existing approaches (Brugnara, 

Falavigna, & Omologo, 1993, Hosom, 2009): it was designed to minimize the predicted error in 

the alignment (McAllester et al., 2010); and it extends the representation of the speech acoustics 

so as to capture temporal regularities in the signal which correlate highly with phoneme 

boundaries (Keshet et al., 2007). This allows the algorithm to achieve significantly higher 

accuracy than competing approaches on a standard benchmark (see Section 5 of McAllester et 

al., 2010).  

As noted above, an important acoustic cue that we focus on in our analysis of speech 

errors is VOT. The second box in Figure 1 is a structured prediction algorithm for measurement 

of VOT (Sonderegger & Keshet, 2012; see Ryant, Yuan, & Liberman, 2013, for an alternative 

approach). Many standard approaches measure parameters based on pre-programmed rules 

developed in consultation with expert annotators (Boyce, Fell, MacAuslan, & Wilde, 2010; 

Hansen, Gray, & Kim, 2010; Prathosh, Ramakrishnan, & Ananthapadmanabha, 2014; Stouten & 

van Hamme, 2009). In contrast, the algorithm utilized here was designed to minimize the error in 

the predicted measurement and had a unique feature set. This novel and unique feature set was 

designed to represent the acoustic signal with a time resolution of 1 millisecond (based on 

processing window of 5 milliseconds) as opposed to the 10 millisecond resolution (reflecting a 

window of 20-25 milliseconds) of standard set feature sets used in automatic speech recognition. 

By allowing us to measure rapidly changing, short-duration acoustic features, this feature set 

reflects properties relating to the critical phonetic parameters of our analysis (e.g., those 

associated with consonant contrasts). Previous research has shown this algorithm can achieve 

high accuracy, near that of human inter-annotator reliability. For example, using a VOT dataset 

collected in our laboratory, the algorithm’s measurements had correlation r = 0.992 with human 



Automatic Analysis of Speech Errors 13 

annotations, compared with r = 0.987 for two human annotators (Sonderegger & Keshet, 2012). 

Comparison of the VOT algorithm used in our experiments to most of the available automatic 

methods for four different benchmarks is detailed in Section VII of Sonderegger and Keshet 

(2012).  

This yields acoustic data from speech recordings without requiring human intervention at 

any intermediate analysis steps. Software implementing each stage of processing is publicly 

available (https://github.com/jkeshet/tongue_twisters), allowing any laboratory to replicate the 

analysis procedures on novel data. We used this approach to examine—in a single experiment—

the VOT of over 68,000 syllables. In comparison, the amount of data examined across all 

existing studies (through 2011) is less than 43,000 syllables in total (Frisch & Wright, 2002; 

Goldrick et al., 2011; Goldrick & Blumstein, 2006; Goldstein, et al., 2007; McMillan & Corley, 

2010; McMillan, et al., 2009; Pouplier, 2003: Experiment 2; 2007, 2008). This amount of data 

allowed us to examine two issues unaddressed in previous work: whether the distinct types of 

tongue twisters utilized in previous work yield distinct phonetic effects in speech errors; and 

whether speech errors exhibit differences in variability as well as mean phonetic properties 

relative to correct productions.  

 

2. Materials and Methods 

2.1 Participants 

Thirty-four native English speakers (21 women) from the Northwestern University 

community participated. These individuals reported no history of speech or language 

impairment. They received financial compensation or course credit. 
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2.2 Materials 

Tongue twisters were composed of syllables with initial consonants contrasting in 

voicing (e.g., post-boast). Forty-eight pairs of syllables were selected, evenly distributed across 

labial (/p/, /b/), alveolar (/t/, /d/) and velar (/k/, /g/) place of articulation. For each syllable, four 

tongue twisters were generated, crossing syllable order (switching, ABBA vs. repeating, ABAB) 

and which member of the pair was placed first (e.g., within ABBA, post boast boast post vs. 

boast post post boast). The 48 pairs were generated from 24 quadruplets of syllables (a full list of 

twisters is provided in the appendix). These consisted of a pair of words (boast-post) matched 

with a pair consisting of a word and nonword (bolt-polt)2.  

Syllable order was blocked, such that each participant saw all of the tongue twisters in 

one order, and then the same tongue twisters in the other order. Block order was counterbalanced 

across participants. Due to a software error, the last trial was omitted for participants 2-4. 

 

2.3 Procedure 

Each target sequence was presented to participants on a computer screen in a sound-

attenuated room. Productions were recorded using a head-mounted microphone. Participants 

practiced each tongue twister once slowly (1 syllable/second) and then repeated it three times 

quickly (2.5 syllables/second) in time to a metronome. Only tokens from the fast repetitions of 

each sequence were analyzed. Trial onset and the onset of fast repetitions were self-paced. 

 

                                                             
2 This lexicality manipulation followed that of previous work (Goldrick & Blumstein, 2006, 
Frisch & Wright, 2002, McMillan et al., 2009). As discussed in the Supplementary Materials, 
this did not consistently influence error rates or phonetic properties of errors, consistent with 
results suggesting effects of lexicality vary across experimental conditions (Dell, 1986, 
Hartsuiker, Corley, & Martensen, 2005). 
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2.4 Automated Acoustic Analysis 

Figure 2 elaborates Figure 1, providing a more detailed overview of our approach to 

analysis of speech. In this study, a recording consisted of the 3 fast repetitions of a tongue twister 

sequence.  

 

 
Figure 2. Detailed schematic for automatic analysis of elicited speech. In such tasks, participants 
are provided with a prompt that specifies the sequence of syllables making up a target utterance. 
Recorded speech is separated from surrounding silence by detecting voice activity. The speech 
and individual target syllables are then aligned to one another, dynamically allowing for 
deviations from the target production (mispronunciations, omitted syllables). These alignments 
are used to determine windows within which linguistically relevant acoustic properties are 
measured. 
 

For the current study, each of these steps was implemented as follows (analysis code for 

these and all subsequent sections is available at https://github.com/jkeshet/tongue_twisters): 

• Voice activity detection (VAD). As a preprocessing step, portions of silence greater 

than 200 milliseconds were removed from the acoustic signal. This was done using a 

Passive-Aggressive binary classifier (Crammer et al., 2006) that was trained on a set 

of 69 utterances from 8 participants; these were annotated for speech vs. non-speech 

portions. The speech signal was framed into 10 millisecond frames, and the first 8 

mel-frequency cepstral coefficients (MFCCs) plus an energy coefficient were 

extracted from each frame (27 features). The input to the classifier was the acoustic 

features along with the features from the previous two frames and the features from 

the following two frames (overall 27 x 5 = 135 features). The classifier was trained 

with a radial basis function kernel (σ = 2.6, C = 1.0), and attained frame-level 

accuracy of 92% on a 10-fold cross validation. We smoothed the frame-level 

Matt  Goldrick  <matt.goldrick@gmail.com>

Twisters  update

Matt  Goldrick  <matt-goldrick@northwestern.edu> Thu,  Aug  7,  2014  at  9:09  AM
To:  Matt  Goldrick  <matt.goldrick@gmail.com>
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predictions by a median filter of size 100. This resulted in a set of smoothed intervals 

of speech. From those intervals we picked the longest interval as our main processing 

portion. Overall the VAD algorithm always detected the main interval of the speech, 

as there was no background noise. In some rare cases when there were non-speech 

portions (laughing, noises produced by touching the mic, etc.) within the main 

processing interval, they were detected by checking the confidence of the forced 

aligner and the deviation of the syllables from the mean as described in the next 

bullet. 

• Dynamic forced alignment. We used a structured prediction algorithm developed in 

Keshet et al. (2007) and McAllester et al. (2010). This was trained on the TIMIT 

corpus (Garofolo et al., 1993), consisting of 5.4 hours of clean read speech, 

transcribed at the phoneme level. The input to the aligner was the speech-specific 

portion of the audio and a transcript reflecting the syllables specified in the target 

tongue twister. Note that because the forced aligner tracks the full range of possible 

phonemes, it is able to handle errors in the productions. For example, it can align /b 

oʊ l/ when the actual production was /p oʊ l/, as the target and error phonemes are 

highly similar. Alignments were computed for a range of transcripts, varying the 

number of syllables from 7 to 14 (where the target number of syllables is 12). The 

actual number of syllables was chosen to be the one which resulted with the highest 

confidence of the forced aligner. Given that productions were intended to be 

produced at regular intervals (as specified by the metronome), we selected the 

transcript where the duration of the interval between each initial consonant exhibited 

the least amount of variation. We did that by computing the average squared 
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difference between the centers of two adjacent syllables. Based on inspection of the 

aligner’s output, thresholds were set to exclude poor alignment fits; this resulted in 

the exclusion of 5.2% of the total possible target productions (N = 4104 / 78,300). 

Syllables beyond the 12 target repetitions were excluded. Based on the selected 

transcripts, the algorithm estimated that 232 syllables were omitted by participants 

(0.3% of total possible target productions). 

• Windowing. Using this transcript, processing windows for the phonetic parameter 

measurement algorithm were defined. This included 20% of the preceding segment 

and 100 milliseconds into the following segment, where the reference point was the 

detected start of the burst. If the extended window boundaries resulted in overlapping 

analysis windows for adjacent syllables or exceeded the boundaries of the file, we 

trimmed them to the longest available option. 

• Phonetic parameter measurement. The algorithm developed in Sonderegger and 

Keshet (2012) was trained on a set of over 19,000 syllables manually coded in a 

previous study (Goldrick et al., 2011). The acoustic signal within each analysis 

window was represented by a set of acoustic features reflecting the onset and offset of 

VOT. The resulting classifier was used to estimate VOT within each of the analysis 

windows identified above. Inspection of initial algorithm performance revealed that 

estimated VOTs of less than 5 milliseconds were typically errors; these observations 

were therefore excluded (N = 5474, 7.4% of the 73,964 initial consonants present in 

the selected transcripts). Note that the algorithm does not detect prevoicing; however, 

with this population, under tongue twister production conditions, prevoicing is very 

rare (Goldrick et al., 2011). The upper 0.5% of remaining observations (VOTs 
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exceeding 144 milliseconds) were excluded as outliers. This yielded a total of 68,159 

VOTs for analysis. 

 

2.4.1 Categorization of Productions as Voiced vs. Voiceless 

English VOT distributions are bimodal, similar to that of many other languages 

distinguishing two voicing categories in initial position; this empirical pattern has long been 

assumed to reflect the presence of two distinct planning representations reflecting voiced vs. 

voiceless (Lisker & Abramson, 1964). The bimodal distributions arise because one planning 

representation nearly completely dominates the characteristics of each articulation (see the 

discussion of “nearly discrete” selection mechanisms in §1.1). This generative model can be 

approximated by a discrete mixture model, where each production is assumed to arise from one 

of two distinct components3.  

Using the R package mixdist (MacDonald, 2012), a mixture of two gamma distributions 

(representing the distinction between voiced vs. voiceless sound categories) was fit to the VOTs 

of each participant at each place of articulation. This estimates the mean and variance of two 

gamma distributions as well as their relative contribution to the overall VOT distribution. 

Gamma distributions were utilized instead of normal distributions as they provided a better fit to 

the long right-tailed VOT distributions (Goldrick et al., 2011). 

Two mixture model fits at each of two initial parameter settings were calculated (varying 

the location of the mean of the voiced component); the model with the best fit to the data was 

utilized. These model fits provided a maximum likelihood threshold, allowing us to classify each 

                                                             
3 A crucial area for extension of this work would be to move beyond this approximation to 
explicitly model the quasi-discreteness of selection, including gradient co-activation in the 
generative model. 
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production as voiced or voiceless. Errors were defined as cases where the intended voicing did 

not match the voicing of the production4. 

 

2.4.2. Linking of syllables to target transcript 

When the transcript identified by our algorithm contained fewer than 12 syllables, the 

alignment of these N syllables to the 12 target syllables had to be computed (so that it was clear 

which syllables had been omitted). This was determined by minimizing the edit distance between 

the target and observed sequences of voiced vs. voiceless initial consonants (preferring deletions 

to replacements, barring insertions into the target string). In the case of multiple such alignments, 

those in which deletions occurred at the end of the string were preferred.  

 

3. Results 

Across participants, the mean overall accuracy was 89.9% (estimated5 95% confidence 

interval [87.7%, 91.8%]). As has been observed in previous studies, there was considerable 

variation across individuals (range: 74.3% - 97.2%). Table 1 provides a breakdown of accuracy 

by place of articulation and voicing. 

                                                             
4 For one participant, high variance in the voiced component of the mixture model caused a long 
VOT (> 120 msec) to be classified as voiced. This was excluded from the analysis. 
5 For these descriptive statistics, confidence intervals via a bootstrap procedure over participant 
means with 1,000 replicates. 
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Table 1. Mean (across participants) proportion correct on initial consonants, separated by place 
of articulation and voicing (estimated 95% confidence interval in brackets).  

 Alveolar Labial Velar 

Voiced 89.9% 
[87.0%, 92.4%] 

81.5% 
[73.8%, 88.0%] 

89.1% 
[83.8%, 92.5%] 

    

Voiceless 91.9% 
[90.0%, 93.6%] 

94.0% 
[91.6%, 95.8%] 

91.2% 
[89.1%, 93.0%] 

    
 

We first establish that the automatic approach replicates standard results. We then 

examine the effects of increasing planning demands; finally, we examine the variability of errors. 

All of the acoustic data with automatic annotations are available in the Online Speech/Corpora 

Archive and Analysis Resource (https://oscaar.ci.northwestern.edu/). 

 
3.1 Statistical analysis method 

To determine whether the distributional properties (mean, variance) of the phonetic 

properties of error productions deviated from correct trials, a Monte Carlo method was used to 

estimate the expected values of these distributional properties in a sample of correct productions 

equal in size to the set of error productions. We utilized this method as it permitted parallel 

analyses of changes to means and variance across conditions, allowing us to assess whether such 

changes were reliable across speakers and items (quadruplets). 

Within each speaker, for all the errorful productions on a given syllable pair in a 

particular twister order (bet!pet in a repeating twister), the set of corresponding correct 

productions on the same pair in the same condition (e.g., the repeat order) were selected 

(pet!pet). A random sample, equal in size to the number of errors, was drawn from this set of 

matched correct productions. The distributional properties (mean, standard deviation over 

participants or items) of this random sample were calculated. This process was repeated 1,000 
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times to provide an estimate of the chance distribution of these distributional properties in a 

sample of correct productions of this size. 

Given that the sample of correct productions needed to be at least as large as the 

corresponding set of errors, cases where the number of errors exceeded the number of matched 

correct productions were excluded. For errors resulting in voiceless consonants, 73 errors (1.8% 

of 4041 total errors) were excluded. For voiced consonants, 122 errors (4.6% of 2679 total 

errors) were excluded. 

 

3.2 Validation 

We validated the algorithm by comparing the results to three previous results. As shown 

in Table 2, we replicate previous transcription studies that show higher accuracy in first and third 

positions in a twister in Repeat vs. Switch orders (Croot et al., 2010; Wilshire, 1999).  

Table 2. Mean (across participants) proportion correct on each position in a twister, with 
difference across orders (estimated 95% confidence interval for difference in brackets). Bold 
indicates significant differences. 

Order Syllable 1 Syllable 2 Syllable 3 Syllable 4 
Repeat 91.8% 91.4% 91.9% 87.6% 

     
Switch 88.7% 90.7% 87.8% 89.2% 

     
Repeat–
Switch 

3.2% 
[1.4%, 5.1%] 

0.7% 
[–0.9%, 2.2%] 

4.1% 
[1.7%, 6.7%] 

–1.6% 
[–3.6%, 0.2%] 

 

Second, in non-errorful productions, we replicated the standard pattern of variation in 

VOT as a function of the place in the oral cavity where airflow was restricted (Cho & Ladefoged, 

1999; labial /p/, mean VOT 61.6 milliseconds; tongue tip /t/, 66.8 milliseconds; tongue body /k/ 

72.3 milliseconds).  
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Finally, in errorful productions, we replicated previous work (Goldrick et al., 2011; 

Goldrick & Blumstein, 2006) showing that errors on voiced and voiceless stops reflect phonetic 

properties of the intended sound, that is, longer VOTs than correct productions for errors like 

pet!bet (Figure 3A), shorter VOTs for errors like bet!pet (Figure 3B). A Monte Carlo method 

estimated the confidence interval for the difference in means for errors vs. correct productions. 

As shown in Table 3 and Figure 3, for both voiced and voiceless consonants, this difference was 

consistently reliable (p < .0001 for all comparisons). Similar results were found in a by-items 

analysis (95% confidence interval for difference from correct productions, voiced repeat: [5.8, 

6.4]; voiced switch: [4.9, 5.5]; voiceless repeat: [–17.0, –15.9]; voiceless switch [–12.6, –11.5]; 

ps < .0001). 

 
3.3 Shifts in mean VOT across conditions 

As shown in Figure 3 and Table 3, the switching condition more closely approximated 

categorical substitutions. That is, errors in this condition consistently exhibited smaller 

deviations from correct productions of the error outcome than the repeat condition (95% 

confidence interval for difference in by-participant means across conditions, voiced consonants: 

[0.5,1.3] milliseconds, p < .0001; voiceless consonants: [–3.7, –1.6] milliseconds, p < .0001). 

Similar results were found for by-item means (95% confidence interval, voiced: [0.4, 1.3] 

milliseconds, p < .0001; voiceless: [–5.2, –3.6] milliseconds, p < .0001). 

 
 
Table 3. Mean VOT (across participants) of errors in each tongue twister syllable ordering 
condition (95% confidence intervals for difference from correct productions in brackets). 
 

  Voiced Voiceless 
Repeat 29.5 [6.3, 6.9] 52.5 [–16.1, –14.8] 

   
Switch 28.0 [5.5, 6.0] 53.1 [–13.6, –12.0] 
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A.  

B.  
 
Figure 3. Shifts in mean of distribution for errors vs. correct productions (A: voiced consonants; 
B: voiceless consonants). Smoothed density plots characterize the distribution of VOTs for all 
errors vs. a single random sample of correct productions produced by the same speaker on the 
same trials. Inset boxplots show the distribution of differences between the mean VOT of errors 
(across participants) and the mean VOT of 1,000 random samples of matched correct 
productions. 
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3.4 Phonetic variability of errors 

We also find that the variability of error tokens was significantly higher than that of 

correct productions. Using the same Monte Carlo method, we estimated the 95% confidence 

interval for the difference in the mean standard deviation for errors vs. correct productions. As 

shown in Table 4 and Figure 4, we find that across participants this difference was consistently 

greater than 0 (p < .0001). Similar results were found in a by-items analysis (95% confidence 

interval for difference from correct productions, voiced repeat: [3.0, 3.6]; voiced switch: [2.1, 

2.7]; voiceless repeat: [1.4, 2.5]; voiceless switch: [2.1, 3.2]; ps < .0001) 

Across participants, no significant differences were observed across different types of 

twisters (95% confidence interval for difference, voiced consonants: [–0.03,0.7] milliseconds, p 

> .05; voiceless consonants: [–0.8, 1.1] milliseconds, p > .30); however, in the by-items analysis 

there was a tendency for variation to be lower in the repeat vs. switching condition (voiced 95% 

confidence interval: [–1.4, –0.5] milliseconds for voiced consonants, p < .0001; voiceless: [–1.5, 

–0.04] milliseconds for voiceless consonants,  p < .05).  

 
Table 4. Mean standard deviation of VOT (across participants) for errors in each tongue twister 
syllable ordering condition (95% confidence intervals for difference from correct productions in 
brackets). 
 

 Voiced Voiceless 
Repeat 10.5  [2.2, 2.7] 18.8  [1.8, 3.0] 

   
Switch 10.4  [2.6, 3.0] 18.9  [1.8, 3.2] 
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A.  

B.  
 
Figure 4. Increase in variance, errors vs. correct productions (A: voiced consonants; B: voiceless 
consonants). Smoothed density plots depict the absolute difference of each observation from the 
mean VOT for errors vs. a single random sample of correct productions produced by the same 
speaker on the same trials. Inset boxplots show the distribution of differences between the mean 
standard deviation of VOT (across participants) for errors and the mean standard deviation of 
1,000 random samples of matched correct productions. 
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3.4.1 Power analysis of phonetic variability 

To determine if our novel analysis method provides for a more accurate assessment of 

phonetic variability, we examined if datasets comparable in size to manually annotated studies 

would be able to detect the effect.  

Excepting one large study examining 19,000 productions (Goldrick, et al., 2011; as noted 

in the introduction, requiring 3,000 person-hours for analysis), previous studies that manually 

annotated the acoustic properties of speech errors (Frisch & Wright, 2002; Goldrick & 

Blumstein, 2006; McMillan & Corley, 2010) have analyzed data from ~8 participants, 

incorporating ~2,300 observations in total. To compare our results to these studies, for both 

voiced and voiceless consonants we randomly selected 10 subsets of 8 participants. We analyzed 

data from the first 28 trials (yielding 2,688 observations total). 

We then repeated the analyses above on these subsets (using 100 random samples to 

estimate the chance distribution). As in the overall analysis, cases where the number of errors 

exceeded the number of matched correct productions were excluded. Given that only a small 

fraction of trials were used, this resulted in the exclusion of a greater proportion of errors. We 

restricted our analysis to random subsets where less than 12% of errors were excluded. Because 

variance was being analyzed, we also restricted our analysis to those participants that produced 

at least 2 errors in the first 28 trials. 

There was a clear reduction in power. For voiced consonants, only 6/10 random subsets 

could recover the significant difference in variability observed in our large set of data. For 

voiceless consonants, only 5/10 random subsets recovered the difference in variability. 

Analyzing a large dataset provides us with the power needed to examine subtle patterns of 

variation in the phonetics of speech. 
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4. Discussion 

Previous research on phonetic variation in speech production has been hamstrung by the 

reliance on subjective, labor-intensive manual annotation. Our approach provides a fully 

replicable method for rapidly analyzing acoustic data. Applying this to speech errors, our results 

provide further evidence against the traditional claim that speech errors are categorical 

substitutions of one sound for another (Dell, 1986; Fromkin, 1971; Shattuck-Hufnagel & Klatt, 

1979). Our ability to analyze large amounts of data provided new insights into the how speech 

errors differ from categorical substitutions. Automatic analysis allowed us to collect sufficient 

data to compare types of twisters that had been utilized in different studies, but never directly 

contrasted. This revealed that some errors are closer to categorical substitutions than others. 

Errors exhibited smaller deviations from correct productions when twisters involved a switching 

vs. repeating alternation pattern. Second, analysis of a very large set of productions allowed us to 

detect that errors exhibit higher variance than correct production—an observation that would 

exceed the power of typical studies performed using manual annotation.   

How can we understand these patterns within current theories of speech production? We 

attribute the difference in tongue twister orders to distinctions in the degree of gradience in 

planning vs. articulatory processes. Because the switching order requires alternation between 

distinct speech plans, increasing demands on planning processes (Rosenbaum, Weber, Hazelett, 

& Hindorff, 1986), it yields a greater number of errors within speech planning processes.  

Consistent with this, we find that errors increase at the point of switching between plans (i.e., at 

the first and third elements in the twister sequence). Assuming that gradience within planning 

processes is constrained—preferring relatively discrete representations over arbitrary blends 
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(Dell, 1986; Goldrick & Chu, 2014; Plaut & Shallice, 1993; Smolensky et al., 2014)—we would 

expect these errors to closely approximate categorical substitutions of one target for another.  In 

contrast, errors arising in the continuous coordination of gestures during articulation should be 

less biased towards purely categorical substitutions. A bin!pin error should therefore be less 

/b/-like—more like a categorical substitution of a /p/—in the switching vs. repeating order. 

The increased variability of errors may be attributed to the reduction of resources 

available for planning and articulation. This reduction in processing resources would result in 

mis-selection of incorrect speech plans as well as difficulty in implementing the appropriate 

articulations. These articulatory difficulties should be reflected in less precise, more variable 

phonetic properties for errors vs. correct productions. 

In sum, we suggest that these findings support an integrated account of phonetic 

deviations. Such effects arise within gradient planning representations (Goldrick & Blumstein, 

2006; Goldrick & Chu, 2014; Pouplier, 2007; Smolensky et al., 2014), sensitive to distinctions 

between sound categories, as well as within articulatory processes that execute such plans 

(Goldstein et al., 2007).  

There are several clear avenues for extending our computational analysis methods. While 

we have focused on one specific aspect of the acoustic signal (VOT), this method can be applied 

to any acoustic dimension for which there are reliable analysis algorithms. Simultaneously 

examining more than one acoustic feature would allow us to take into account the multi-

dimensional nature of speech sound contrasts (see Toscano & Murray, 2010, for a recent review 

and discussion). Extensions to the dynamic alignment process would allow for analysis of 

elicitation tasks that place fewer restrictions on the speaker, allowing us to move towards 

detailed automated analysis of spontaneous speech. 
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These findings illustrate the novel insights into language production that can be 

facilitated by the automatic analysis of large samples of speech. Such analyses could enhance 

many aspects of language production research. Returning to two examples discussed in the 

introduction, our understanding of how word duration reduces across repetitions (Kahn & 

Arnold, 2012, Lam & Watson, 2010) could be enhanced by systematic examination of a wide 

array of delays between mentions of a word. Understanding the mechanisms underlying accent 

variation following language switching (Balukas & Koops, 2015; Goldrick et al., 2014; Olson, 

2013) could be enhanced by examining a wider array of bilingual speakers (who vary in second 

language proficiency, practice in switching, etc.). More generally, revealing the extent to which 

continuous variation in different cognitive processes modulates articulation and acoustics will 

help inform the development of theories incorporating gradient cognitive representations. 

Currently, such theories have high degrees of freedom. Gradient representations can specify a 

wide array of distinct representational states, and the relationship of such states to detailed 

aspects of speech has not been clearly specified (Pouplier & Goldstein, 2010, 2014). A richer 

empirical base will provide more constraints on such proposals.  
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Appendix 

Table A1. Quadruplets of pairs of syllables that form the basis for tongue twisters. Each pair in a 
quadruplet generates 4 tongue twisters (see text for details). 
 

Pair 1 Pair 2 
Word 1 Word 2 Word Nonword 

punk bunk pulp bulp 
punch bunch pulse bulse 
pox box posh bosh 
peat beat peal beal 
bowl pole bone pone 
beak peek bean pean 
bet pet bell pell 

boast post bolt polt 
tab dab tat dat 

tense dense tenth denth 
torque dork torn dorn 

tote dote toad dode 
dour tower douse touse 
dense tense dealt telt 
dart tart darn tarn 
dune tune dupe toop 
cod god cop gop 
cuff guff cud gud 
cape gape cake gake 
code goad comb gome 
gap cap gas cass 

goon coon goose coose 
guilt kilt gift kift 
gain cane gate kate 

 

 



  

Lexicality analyses 

1. Error rates 

As shown in Table S1, participants’ accuracy rate was roughly 90% across conditions. 

(Confidence intervals in Table S1 and throughout were estimated using a bootstrap with 1,000 

samples.) We unexpectedly failed to observe a reliable lexical bias effect, where errors favor 

word over nonword outcomes. Accuracy was not substantially lower on nonword targets (where 

a voicing error would create the word outcome favored by this bias), nor was it substantially 

higher on the corresponding word target (where a voicing error would produce a disfavored 

nonword outcome). It is unclear why this was the case. Previous work has suggested the lexical 

bias effect weakens with faster response rates (Dell, 1986); one possibility is that the tongue 

twister production rate was too rapid for lexical effects to observed. 

Table S1. Mean (across participants) proportion correct on elements of quadruplets (estimated 
95% confidence interval in brackets). 

Condition Word 1 Word 2 Word Nonword 

Repeat 89.8% 
[87.7%,91.8%] 

91.3% 
[89.2%,93.0%] 

90.2% 
[88.0%,92.3%] 

91.2% 
[89.2%,93.0%] 

     

Switch 88.0% 
[84.5%,91.0%] 

91.2% 
[88.7%,93.5%] 

88.2% 
[85.2%,91.0%] 

88.9% 
[86.1%, 91.5%] 

 
 
2. VOT analysis 

Previous work (Frisch & Wright, 2002; Goldrick & Blumstein, 2006; McMillan, Corley, 

& Lickley, 2009) has suggested that whether or not an error results in a word vs. a nonword can 

influence the degree to which an error deviates from a corresponding correct production. Studies 

with nonword targets (Goldrick & Blumstein, 2006; McMillan et al., 2009) have shown that 

errors resulting in nonwords (keff!geff) show larger deviations from correct outcomes than 

errors resulting in words (keese!geese). Consistent with this result, one study examining word 



targets (Frisch & Wright, 2002) provided some evidence that errors resulting in nonwords 

(suck!zuck) are more likely to result in tokens with atypical phonetic properties relative to 

errors resulting in words (sue!zoo). 

Parallel to this latter study, by contrasting syllables across pairs within a quadruplet, we 

can examine how the lexicality of the outcome influences errors on word targets. Monte Carlo 

analyses structure following those reported in the main text estimated the 95% confidence 

intervals for correct productions matched to two types of errors. Tables S2-S3 compare errors on 

word targets that result in nonwords (bolt!polt) to matched errors that result in words 

(boast!post).  

 
Table S2. Mean VOT (across participants) of errors in conditions contrasting in outcome 
lexicality (95% confidence intervals for difference from correct productions in brackets). 

Condition Word Target ! 
Nonword Error Outcome 

Matched Word Target ! 
Word Error Outcome  

Voiced 28.0 
[4.9, 5.7] 

29.3 
[6.5, 7.2] 

   

Voiceless 52.4 
[–16.7, –14.9] 

52.9 
[–15.9, –13.9] 

 
Table S3. Mean VOT (across quadruplets) of errors in conditions contrasting in outcome 
lexicality (95% confidence intervals for difference from correct productions in brackets). 

Condition Word Target ! 
Nonword Error Outcome 

Matched Word Target ! 
Word Error Outcome  

Voiced 27.8 
[4.6, 5.4] 

29.0 
[6.3, 7.0] 

   

Voiceless 50.5 
[–16.5, –15.0] 

51.0 
[–16.0, –14.5] 

 
 
We failed to find a consistent effect across voiced and voiceless consonants. In the by-

participants analysis (Table S2), voiced outcomes resulting in nonwords showed smaller 

deviations from correct productions than errors resulting in words (95% confidence interval for 



difference across conditions [–2.1, –1.0] milliseconds, p < .0001) whereas there was a non-

significant difference for voiceless consonants (95% CI [–2.4, –0.5] milliseconds, p > .05; recall 

for voiceless consonants that a negative difference indicates a stronger deviation from correct 

productions). Similar results were found in the by-quadruplets analysis (Table S3; 95% 

confidence interval for difference across conditions, voiced consonants [–2.2, –1.1] milliseconds, 

p < .0001; 95% CI for voiceless consonants [–1.6, 0.6] milliseconds, p > .05).  

Our design also allows us to examine how the lexicality of the target influences errors 

resulting in word outcomes (unexamined in previous work). Tables S4-S5 compare errors on 

nonword targets that result in words (polt!bolt) to matched errors on word targets 

(post!boast). For both voiced and voiceless consonants, we find that deviations from correct 

productions are larger for nonword!word relative to word!word errors. 

 
 

Table S4. Mean VOT (across participants) of errors in conditions contrasting in target lexicality 
(95% confidence intervals for difference from correct productions in brackets). 

Condition Nonword Target ! 
Word Error Outcome 

Matched Word Target ! 
Word Error Outcome  

Voiced 29.4 
[6.2, 7.1] 

28.1 
[5.2, 6.2] 

   

Voiceless 52.7 
[–11.0, –9.0] 

54.8 
[–4.2, –1.3] 

 
Table S5. Mean VOT (across quadruplets) of errors in conditions contrasting in target lexicality 
(95% confidence intervals for difference from correct productions in brackets). 

Condition Nonword Target ! 
Word Error Outcome 

Matched Word Target ! 
Word Error Outcome  

Voiced 28.2 
[4.9, 5.8] 

28.8 
[4.0, 5.1] 

   

Voiceless 50.2 
[–15.1, –13.5] 

51.4 
[–12.3, –10.5] 

 
 



In the by-participants analysis (Table S4), errors on nonword targets showed larger 

deviations from correct productions than errors on word targets (95% confidence interval for 

difference across conditions, voiced consonants: [0.3, 1.5] milliseconds, p < .0001; voiceless 

consonants: [ –4.2, –1.3] milliseconds, p < .0001). Similar results were found in the by-

quadruplets analysis (Table S5; 95% CI for difference across conditions, voiced consonants: 

[0.02, 1.5] milliseconds, p < .05; voiceless consonants: [–4.1, –1.7] milliseconds, p < .0001). 

This latter result provides some additional qualified support for the role of planning 

processes in speech error articulation. Lexicality reflects a property of sound sequences that is 

stored in long term memory—their association to lexical items and meanings. This property of 

memory modulates the degree to which errors deviate from correct productions. However, it is 

unclear why nonword targets would exert a stronger influence on error articulation than 

comparable word targets. Given our failure to observe an influence of lexicality on the 

probability of error outcomes, we can speculate that some aspect of the experimental context 

may have served to strengthen the activation of nonwords (eliminating the advantage for word 

outcomes and strengthening their influence on error articulation). Examination of this possibility 

requires further manipulation of the experimental context in which tongue twisters are elicited. 
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