
1

Spoken Term Detection Automatically Adjusted for
a Given Threshold

Tzeviya Fuchs and Joseph Keshet

Abstract—Spoken term detection (STD) is the task of deter-
mining whether and where a given word or phrase appears
in a given segment of speech. Algorithms for STD are often
aimed at maximizing the gap between the scores of positive
and negative examples. As such they are focused on ensuring
that utterances where the term appears are ranked higher than
utterances where the term does not appear. However, they do not
determine a detection threshold between the two. In this paper,
we propose a new approach for setting an absolute detection
threshold for all terms by introducing a new calibrated loss
function. The advantage of minimizing this loss function during
training is that it aims at maximizing not only the relative ranking
scores, but also adjusts the system to use a fixed threshold and
thus maximizes the detection accuracy rates. We use the new
loss function in the structured prediction setting and extend
the discriminative keyword spotting algorithm for learning the
spoken term detector with a single threshold for all terms. We
further demonstrate the effectiveness of the new loss function by
training a deep neural Siamese network in a weakly supervised
setting for template-based spoken term detection, again with
a single fixed threshold. Experiments with the TIMIT, WSJ
and Switchboard corpora showed that our approach not only
improved the accuracy rates when a fixed threshold was used
but also obtained higher Area Under Curve (AUC).

Index Terms—Spoken term detection, keyword spotting, AUC
maximization, structured prediction, deep-neural networks

I. INTRODUCTION

SPOKEN term detection (STD) refers to the proper de-
tection of any occurrence of a given word or phrase in a

speech signal. Typically, any such system assigns a confidence
score to every term it presumably detects. A speech signal is
called positive or negative, depending on whether or not it
contains the desired term. Ideally, an STD system assigns a
positive speech input with a score higher than the score it
assigns to a negative speech input.

During inference, a detection threshold is chosen to de-
termine the point from which a score would be considered
positive or negative. The choice of the threshold represents
a trade-off between different operational settings, as a high
value of the threshold could cause an excessive amount of
false negatives (instances incorrectly classified as negative),
whereas a low value of the threshold could cause additional
false positives (instances incorrectly classified as positive).

The performance of STD systems can be measured by the
Receiver Operation Characteristics (ROC) curve, that is, a plot
of the true positive (spotting a term correctly) rate as a function
of the false positive (mis-spotting a term) rate. Every point on

T. Fuchs and J. Keshet are with the Department of Computer Sci-
ence, Bar-Ilan University, Ramat-Gan, Israel, Emails: fuchstz@cs.biu.ac.il,
jkeshet@cs.biu.ac.il

the graph corresponds to a specific threshold value. The area
under the ROC curve (AUC) is the expected performance of
the system for all threshold values.

A common practice for finding the threshold is to em-
pirically select the desired value using a cross validation
procedure. In [1], the threshold was selected using the ROC
curve. Similarly, in [2], [3] and the references therein, the
threshold was chosen such that the system maximized the
Actual Term Weighted Value (ATWV) score [4]. Additionally,
[5] claims that a global threshold that was chosen for all terms
was inferior to using a term specific threshold [6].

Recently, two works proposed to normalize the detection
scores such that a global threshold could be used for all terms
while aiming to maximize ATWV. Karakos et al. (2013) [4]
suggested to calibrate the scores so that all the keywords in a
keyword spotting system would be comparable to each other
using a machine learning technique. Vinyals and Wegmann
(2014) [7], on the other hand, proposed a surrogate loss
function which approximates ATWV by smoothing it with
a sigmoid function, and set a fixed threshold of 0.5 for all
keywords.

In this paper we propose a new method to embed an
automatic adjustment of the detection threshold within a
learning algorithm, so that it is fixed and known for all terms.
We present two algorithmic implementations of our method:
the first is a structured prediction model that is a variant of
the discriminative keyword spotting algorithm proposed by
[8], [9], [10], and the second implementation is a variant of
whole-word Siamese deep network models [11], [12], [13].
Both of these approaches in their original form aim to assign
positive speech inputs with higher scores than those assigned
to negative speech inputs, and were shown to have good results
on several datasets. However, maximizing the gap between the
scores of the positive and negative examples only ensures the
correct relative order between those examples, and does not
fix a threshold between them; therefore it cannot guarantee a
correct detection for a global threshold. Our goal is to train a
system adjusted to use a global threshold valid for all terms.

In this work, we set the threshold to be a fixed value,
and adjust the decoding function accordingly. To do so, we
propose a new loss function that trains the ranking function
to separate the positive and negative instances; that is, instead
of merely assigning a higher score to the positive examples,
it rather fixes the threshold to be a certain constant, and
assigns the positive examples with scores greater than the
threshold, and the negative examples with scores less than the
threshold. Additionally, this loss function is a surrogate loss
function which extends the hinge loss to penalize misdetected

2

instances. The new loss function is an upper bound to the
ranking loss function, hence minimizing the new loss function
can lead to minimization of ranking errors, or equivalently to
the maximization of the AUC.

This paper is organized as follows. In Sec. II we formally
introduce the spoken term detection problem, and in Sec. III
we derive the method with which we restrict the detection
threshold to be fixed. We then present the two implementations
of our derived method: in Sec. IV we use fully supervised
learning to learn the parameters of a structured prediction
model, and in Sec. V we use weakly supervised learning to
learn the parameters of a deep network. In both of these algo-
rithms, our method sets a detection threshold and maximizes
accuracy rates. Next, we present experimental results of both
implementations in Sec. VI. Finally, concluding remarks and
future directions are discussed in Sec. VII.

II. PROBLEM SETTING

In the STD task, we are provided with a speech utterance
and a term and the goal is to decide whether or not the term is
uttered. The term can be provided as a sequence of phonemes
or by an acoustic representation given by a speech segment in
which the term is known to be uttered.

Throughout the paper, scalars are denoted using lower case
Latin letters, e.g., x, and vectors using bold face letters, e.g.,
x. A sequence of elements is denoted with a bar (x̄) and its
length is written as |x̄|.

Formally, the speech signal is represented by a sequence of
acoustic feature vectors x̄ = (x1, . . . ,xT), where each feature
vector is d dimensional xt ∈ Rd for all 1 ≤ t ≤ T . Note
that in our setting the number of frames T is not fixed. We
denote by X = (Rd)∗ the set of all finite length sequences
over Rd. A sequence of Lr phonemes of a term r is denoted
as p̄r = (p1, . . . , pLr), where pl ∈ P for all 1 ≤ l ≤ Lr and
P is the set of phoneme symbols. We denote by P∗ the set
of all finite length sequences over P .

A term is a word or a short phrase and is presented to
the system either as a sequence of phonemes in the strongly
supervised setting or as an acoustic segment containing the
term in the weakly supervised setting. We denote the abstract
domain of the term representations (as either a phoneme
sequence or an acoustic segment) by R. Our goal is to find a
spoken term detector, which takes as input a speech segment
and a term and returns a binary output indicating whether the
term was pronounced in the acoustic segment or not. Most
often the spoken term detector is a function that returns a real
value expressing the confidence that the target term has been
uttered. The confidence score outputted by this function is
compared to a threshold, and if the score is above the threshold
the term is declared to have been pronounced in the speech
segment. Formally, the detector is a function f from X × R
to R. The detection threshold is denoted by the scalar θ ∈ R.
Usually there is no single threshold for all terms, and it needs
to be adjusted after decoding.

Our goal in this work is to propose a new method to learn
the spoken term detector from a training set of examples, so
that the model is adjusted to use a fixed given threshold for all

terms. The function f is found from a training set of examples,
where each example is composed of two speech segments and
a representation of a term. Although the training set contains
many different terms, the function f should be able to detect
any term, not only those already seen in the training phase.

III. LOSS FUNCTION FOR DETECTION WITH A FIXED
THRESHOLD

In this section we describe our main idea, whereas in the
next sections we propose two implementations: one with a
structured prediction model where the training data is fully
supervised and the term is given as a phoneme sequence, and
the other with a deep learning model where the training data
is weakly supervised and the term is given using a segment
of speech.

Recall that during inference the input to the detector is a
speech segment and a term and the output is a confidence
that the term was pronounced in the speech segment, which
is compared to a threshold. Since the detection threshold is
typically not fixed and does depend on the input term, it is
often desired to learn the function f such that the confidence
of a speech segment that contains the term is higher than the
confidence of a speech segment that does not contain the term.

Formally, let us consider two sets of speech segments.
Denote by X r+ a set of speech segments in which the term r is
articulated. Similarly, denote by X r− a set of speech segments
in which the term r is not articulated. We assume that term r,
and two instances x̄+ ∈ X r+ and x̄− ∈ X r− are drawn from
a fixed but unknown probability distribution, and we denote by
P{π} and E[π] the probability and the expectation of an event
π under this distribution. The probability that the confidence
of x̄+ is higher than the confidence of x̄− is the area under
the ROC curve (AUC) [14], [15]:

AUC = P {f(x̄+, r) > f(x̄−, r)}. (1)

Instead of keeping a threshold for each term, we adjust f
so that the detection threshold will be fixed, and set to a
predefined value. Assume that the predefined threshold is θ,
then the accuracy in the prediction can be measured by

Accθ = P {f(x̄+, r) > θ ∧ f(x̄−, r) < θ}, (2)

where ∧ is the logical conjunction symbol. Hence our goal is
to find the parameters of the function f so as to maximize the
accuracy Accθ for a given threshold θ. Equivalently we find
the parameters of function f that minimize the error defined
as

Errθ = 1−Accθ (3)
= P {f(x̄+, r) < θ ∨ f(x̄−, r) > θ} (4)

= E
[
I{f(x̄+, r) < θ}+ I{f(x̄−, r) > θ}

]
, (5)

where ∨ is the logical disjunction symbol, and I{π} is the
indicator function, that equals 1 if the predicate π holds true
and 0 otherwise.

Unfortunately, we cannot minimize the error function (5)
directly, since it is a combinatorial quantity. A common
practice is to replace the error function with a surrogate loss

3

function which is easy to minimize. We suggest to minimize
a convex upper-bound to the error function. Specifically, we
replace the last term with the hinge upper bound,

Errθ ≤ E
[
[1 + θ− f(x̄+, r)]+ + [1− θ+ f(x̄−, r)]+

]
, (6)

where [π]+ = max{π, 0}. The last upper bound holds true
since I{π < 0} ≤ [1−π]+. Adding the margin of 1 means that
the function f faces a harder problem: not only does it need to
have a confidence greater than θ for a positive speech segment
and a confidence lower than θ for a negative speech segment
– the confidence value must be at least θ+1 and at most θ−1
for positive and negative speech segments, respectively.

We now turn to present two algorithmic implementations
that are aimed at minimizing the loss function derived from
(6), namely,

`(x̄+, x̄−, r; θ) = [1 + θ − f(x̄+, r)]+

+ [1− θ + f(x̄−, r)]+. (7)

Hopefully the minimization of this loss function will lead to
the minimization of Errθ in (6).

IV. STRUCTURED PREDICTION MODEL

Our first construction is based on previous work on dis-
criminative keyword spotting and spoken term detection [8],
[9], [10], where the goal was to maximize the AUC. In this
setting we assume that the term is expressed as a sequence of
phonemes denoted p̄r ∈ P∗.

In this fully-supervised setting we define the alignment
between a phoneme sequence and a speech signal. We de-
note by yl ∈ N the start time of phoneme pl (in frame
units), and by el = yl+1 − 1 the end time of phoneme
pl, except for the phoneme pL, where the end frame is eL.
The alignment sequence ȳr corresponding to the phonemes
sequence p̄r is a sequence of start-times and an end-time,
ȳr = (y1, . . . , yL, eL), where yl is the start-time of phoneme
pl and eL is the end-time of the last phoneme pL.

Similar to previous work [8], [9], [10], our detection func-
tion f is composed of a predefined set of n feature functions,
{φj}nj=1, each of the form φj : X ∗ × P∗ × N∗ → R. Each
feature function takes as input an acoustic representation of a
speech utterance x̄ ∈ X ∗, together with the term phoneme
sequence p̄r ∈ P∗, and a candidate alignment sequence
ȳr ∈ N∗, and returns a scalar in R which represents the
confidence in the suggested alignment sequence given the term
r. For example, one element of the feature function can sum
the number of times phoneme p comes after phoneme p′, while
other elements of the feature function may extract properties
of each acoustic feature vector xt provided that phoneme p is
pronounced at time t. Our basic set of feature functions is the
same as the set used in [8].

We believe that the threshold value for each term depends on
the term’s phonetic content and its relative duration. In order
to allow f to learn these subtle differences from the data we
introduced an additional set of 4 feature functions: a feature
function representing a bias; a feature function that counts the
number of occurrences of a phoneme in a term, i.e., |{q|q ∈

p̄r}|; a feature function holding the number of phonemes in
the term, i.e., |p̄r|; and a feature function holding the average
length of the phonemes in a term, i.e., 1

Lr

∑Lr

i=1(yi+1 − yi).
As mentioned above, our goal is to learn a spoken term

detector f , which takes as input a sequence of acoustic features
x̄, a term p̄r, and returns a confidence value in R. The form
of the function f we use is

f(x̄, p̄r) = max
ȳ

w · φ(x̄, p̄r, ȳ) , (8)

where w ∈ Rn is a vector of importance weights that should
be learned and φ ∈ Rn is a vector function composed
out of the feature functions φj . In other words, f returns a
confidence prediction about the existence of the term in the
utterance by maximizing a weighted sum of the scores returned
by the feature function elements over all possible alignment
sequences. If the confidence of the function f is above the
threshold θ then we predict that the term is pronounced in the
signal and located in the time span defined by the alignment
sequence ȳ that maximizes (8):

ȳ′ = arg max
ȳ

w · φ(x̄, p̄r, ȳ) , (9)

where the search for the best sequence is practically performed
using the Viterbi algorithm as described in [8]. Specifically,
the algorithm finds the optimal time segment for the keyword r
in the speech signal x̄, and then aligns the phoneme sequence
p̄r within the chosen time segment.

The parameters of the model w are found by minimizing
the loss function defined in (7). In the fully supervised case
we use a slightly modified version of it, which is defined as

`(w, (x̄+, x̄−, p̄r, ȳr); θ)

=
[
1 + θ −w>φ(x̄+, p̄r, ȳr)

]
+

+
[
1− θ + max

ȳ′
w>φ(x̄−, p̄r, ȳ′)

]
+
. (10)

This is a convex function in the vector of the parameters w. We
use the Passive-Aggressive (PA) algorithm [16], [8] to find the
parameters w. The algorithm receives as input a set of training
examples S = {(p̄ri , x̄+

i , x̄
−
i , ȳ

ri)}mi=1 and examines each of
them sequentially. Initially, we set w = 0. At each iteration
i, the algorithm updates w according to the current example
(p̄ri , x̄+

i , x̄
−
i , ȳ

ri) as we now describe.
Denote by wi−1 the value of the weight vector before the ith

iteration. We set the next weight vector wi to be the minimizer
of the following optimization problem,

wi = argmin
w∈Rn,ξ≥0

1

2
||w −wi−1||2 + Cξ (11)

s.t. `(wi, (p̄
ri , x̄+

i , x̄
−
i , ȳ

ri); θ) ≤ ξ ,

where C serves as a complexity-accuracy trade-off parameter
and ξ is a non-negative slack variable, which indicates the loss
of the ith example. Intuitively, we would like to minimize
the loss of the current example, i.e., the slack variable ξ,
while keeping the weight vector w as close as possible to
our previous weight vector wi−1. The constraint makes the
projection of the utterance in which the term is uttered onto
w greater than θ + 1, and the projection of the utterance in

4

Require: training set S = {(p̄ri , x̄+
i , x̄

−
i , ȳ

ri)}mi=1;
desired threshold θ, trade-off parameter C
w0 = 0
for i = 1, . . . ,m do
ȳ′i = arg maxȳ w>i−1φ(x̄−i , p̄

ri , ȳ)
`+ = 1 + θ −w>i−1φ(x̄+

i , p̄
ri , ȳri)

`− = 1− θ + w>i−1φ(x̄−i , p̄
ri , ȳ′i)

if `+ > 0 and `− > 0 then
∆φ = φ(x̄+

i , p̄
ri , ȳri)− φ(x̄−i , p̄

ri , ȳ′i)
τ = (`+ + `−)

/
||∆φ||2

else if `+ > 0 and `− < 0 then
∆φ = φ(x̄+

i , p̄
ri , ȳri)

τ = `+
/
||∆φ||2

else if `+ < 0 and `− > 0 then
∆φ = −φ(x̄−i , p̄

ri , ȳ′i)
τ = `−

/
||∆φ||2

else
τ = 0

end if
wi = wi−1 + min {C, τ} ∆φ

end for
return The average weight vector w = 1

m

∑m
i=1 wi or

the best wi on a validation set w = arg maxiAccθ(wi).

Fig. 1. PA-ACC algorithm for maximizing Accθ defined in (2).

which the term is not uttered onto w less than θ − 1. The
closed form solution to the above optimization problem can
be derived using the Karush-Kuhn-Tucker conditions in the
same lines of [16, App. A].

The loss in (10) is composed of two hinge functions and
therefore introduces a more elaborate solution than the one
derived for the ranking loss of [8]. We call this algorithm PA-
ACC (Passive-Aggressive to maximize Accuracy). A pseudo-
code of the algorithm is given in Fig. 1. At every iteration
i in [1, ...,m], the algorithm calculates the two components
of the surrogate loss defined by (10); we denote these two
components by `+ and `− respectively. The algorithm then
assigns values to τ and ∆φ, which are used to update the
weight vector w. These two variables could be viewed as the
equivalents of the learning rate and the gradient, respectively.
Their values are determined according to the 4 possible cases
of whether `+ or `− are greater than or less than zero. Finally,
the weight vector w is updated using the values assigned to
τ and ∆φ.

Since the PA-ACC algorithm is an online algorithm which
deals with drifting hypotheses, it is highly influenced by
the recent examples. Common methods to convert an online
algorithm to a batch algorithm are either by taking the average
over all the parameters {wi}, or by taking the best wi over a
validation set [17], [18].

V. DEEP NETWORK MODEL

We turn to exemplify our idea in the weakly supervised
setting using deep networks. This implementation is based
on recent work on whole-word segmental systems [11], [12],
[13]. These works present a Siamese network model trained

with a ranking loss function. Siamese networks [19] are neural
networks with a tied set of parameters which take as input
a pair of speech segments and are trained to minimize or
maximize the similarity between the segments depending on
whether the same term has been pronounced in the pair of
segments.

In this setting the term r is represented by two speech
segments rather than a phoneme sequence: a speech segment
in which the term r is pronounced, x̄+, and a speech segment,
in which the term r is not pronounced, x̄−. Similar to those
works, we assume that each example in the training set is
composed of the triplet (x̄t, x̄+, x̄−), where x̄t, x̄+ ∈ X r+
and x̄− ∈ X r−. The goal in training the network is that
the similarity score between x̄t and x̄+ should be above the
similarity score between x̄t and x̄−.

Denote by gu : X ∗ → Rd a deep network (the specific
architecture is discussed in Section VI) with a set of param-
eters u, where d is the dimension of the output. Denote by
ρ : Rd×Rd → R a measure of similarity between two output
vectors of size d. The spoken term detector fu : X ∗×X ∗ → R
is the composition of Siamese networks gu and the similarity
function. Hence an unknown speech segment x̄t can be
compared to a positive speech segment

fu(x̄t, x̄+) = ρ(gu(x̄t), gu(x̄+)),

or to a negative speech segment

fu(x̄t, x̄−) = ρ(gu(x̄t), gu(x̄−)).

The tied parameters u of all the models were found in [11],
[12], [13] using the minimization of the ranking loss function

`(x̄t, x̄+, x̄−) =
[
γ − fu(x̄t, x̄+) + fu(x̄t, x̄−)

]
+

(12)

for different options of the similarity function ρ. In this work
we propose to minimize the loss function in (7), which is
defined for the weakly supervised case as follows:

`(x̄t, x̄+, x̄−; θ) =
[
γ + θ − fu(x̄t, x̄+)

]
+

+
[
γ − θ + fu(x̄t, x̄−)

]
+
, (13)

when the margin of γ > 0 is used. In this case, the parameter γ
is not set to 1, since the function fu is not a linear function and
hence is not scale invariant to the margin, as in the structured
prediction case.

In the next section we present our empirical comparison for
all the loss functions on different speech corpora.

VI. EXPERIMENTS

In this section we present experimental results that demon-
strate the effectiveness of our proposed calibrated loss function
(7). We compared the proposed loss to the standard approach
of maximizing AUC using the ranking loss as in (12) where
no fixed threshold can be set. The experiments on the struc-
tured prediction model were conducted using fully supervised
training sets of read speech (TIMIT, WSJ). The experiments
on the deep network model performed on a weakly supervised
data of conversational speech (Switchboard).

5

A. Structured prediction model

To validate the effectiveness of the proposed approach, we
performed experiments with the TIMIT corpus. The training
and validation sets were taken from the TIMIT training set.
The training set was composed from 1,512 randomly chosen
terms, corresponding to 11,139 pairs of positive and negative
utterances (each term repeated more than once). Similarly,
the validation set was composed from 378 different randomly
chosen terms, corresponding to 2,892 pairs. The validation set
was used to tune the algorithm’s parameters.

The test set was composed of 80 terms that were suggested
as a benchmark in [8], and are distinct from the terms used in
the training and validation sets. For each term, we randomly
picked at most 20 utterances in which the term was uttered
and at most 20 utterances in which it was not uttered. The
utterances were taken from the TIMIT test set. The number of
test utterances in which the term was uttered was not always
20, since some terms were uttered less than 20 times in the
whole TIMIT test set.

We measure performance using the AUC defined in (1)
and using the accuracy of a fixed threshold θ denoted Accθ.
Specifically, we calculate AUC on the test set of mtest examples
according to

ÂUC =
1

mtest

mtest∑
i=1

I
{
f(x̄+

i , p̄
ri) ≥ f(x̄−i , p̄

ri)
}
, (14)

and the accuracy by

Âccθ =
1

mtest

mtest∑
i=1

I
{
f(x̄+

i , p̄
ri)>θ ∧ f(x̄−i , p̄

ri)<θ
}
. (15)

We tested the PA-ACC algorithm using two options. The
first was whether the final weight vector was a result of
averaging or was the best to perform on the validation set.
The second option was whether the new feature functions we
introduced were normalized by the length of the phoneme
sequence |p̄r| or not. The AUC and Accθ rates found on our
validation and test set are presented in Table I. In training
PA-ACC we chose arbitrarily θ = 0.

TABLE I
AUC AND ACCθ RATES OF THE PA-ACC ALGORITHM. THE FIRST

COLUMN INDICATES WHETHER THE NEW FEATURE FUNCTIONS WERE
NORMALIZED OR NOT. THE SECOND COLUMN INDICATES WHETHER THE
FINAL WEIGHT VECTOR WAS A RESULT OF AVERAGING OR WAS THE BEST

TO PERFORM ON THE VALIDATION SET.

Normalized AUC Accθ

feature func. Final w Validation Test Validation Test

False best. 0.978 1.000 0.846 0.931

False average. 0.978 1.000 0.829 0.920

True best. 0.978 1.000 0.813 0.926

True average. 0.964 0.994 0.811 0.943

We can see from the table that since the TIMIT dataset is
very clean the detection rates are very good and the AUC is
almost always 1. The results presented here are improved over

the results presented in [8] due to the introduction of the new
feature functions. It is interesting to note that the best Acc0

results on the validation set were obtained when the additional
features were not normalized and the final weight vector was
selected over the validation set, while the best Acc0 results on
the test set were obtained with the opposite conditions: when
the final weight vector was the average one and the additional
feature functions were normalized. Further research on feature
functions should be conducted and extended to a larger dataset.

Setting the threshold θ to zero was an arbitrary choice, and
changing its value does not affect the Accθ and AUC rates.
The reason is that the values of the parameters w can be scaled
according to the value of the threshold. Hence the actual value
of the threshold does not play an important role. This is similar
to the concept of large margin which is arbitrarily set to 1 in
the optimization problem and not to a specific value [20].

We now turn to compare the performance of our algorithm
against two other algorithms. The first is the discriminative
keyword spotting algorithm presented in [8], which is the
Passive-Aggressive algorithm trained with the ranking loss
to maximize the AUC. It is denoted here as PA-AUC. We
introduce two versions of this algorithm: the original version
and an extended version with the additional set of feature
functions described in Sec. IV. When using the extended
version of PA-AUC, normalizing the features had no affect on
our results. Similarly, a comparison of using the final weight
vector versus the best weight vector yielded similar outcomes.

The second algorithm is an HMM-based spoken term de-
tection algorithm presented in [8]1.

For all the algorithms we report the AUC and Accθ in
Table II. For the two versions of PA-AUC we selected a
single threshold θ that gave the best Accθ on the validation
set. Similarly we selected the best threshold for the HMM
algorithm. For PA-ACC we selected θ = 0.

TABLE II
A COMPARISON OF ACCθ AND AUC RATES OF 3 ALGORITHMS: PA-AUC,

HMM AND PA-ACC ON THE TIMIT CORPUS.

AUC Accθ

PA-AUC 0.988 0.846

PA-AUC (additional feature func., norm.) 0.994 0.926

PA-AUC (additional feature func., no norm.) 0.994 0.926

HMM 0.943 0.724

PA-ACC (norm, avg) 0.994 0.943

PA-ACC (no norm, best) 1 0.931

It is interesting to see that the AUC of PA-ACC is the same
or even higher than that of the PA-AUC. Since Accθ is a lower
bound to AUC, the AUC can be thought of as Accθ with the
best threshold selected for every term in the set. Indeed from
Table II we see that the Accθ was very close to the AUC but
did not reach it.

1left-to-right HMM of 5 emitting states with 40 diagonal Gaussians trained
as a phoneme recognizer.

6

We evaluate the model trained on TIMIT on the Wall Street
Journal (WSJ) corpus [21]. This corpus corresponds to read ar-
ticles of the Wall Street Journal, and hence presents a different
linguistic context compared to TIMIT. Both the discriminative
system and the HMM-based system were trained on the TIMIT
corpus as described above and evaluated on a different set of
80 keywords from the WSJ corpus. For each keyword, we
randomly picked at most 20 utterances in which the keyword
was uttered and at most 20 utterances in which it was not
uttered from the si_tr_s portion of the WSJ corpus. We
used the same setting as in [8]. As before we arbitrarily chose
the threshold θ = 0. The results are presented in Table III.

TABLE III
A COMPARISON OF ACCθ AND AUC RATES OF 3 ALGORITHMS: PA-AUC,

HMM AND PA-ACC ON THE WSJ CORPUS.

AUC Accθ

PA-AUC 0.945 0.803

PA-AUC (additional feature func.) 0.951 0.821

HMM 0.879 0.578

PA-ACC (norm, avg) 0.949 0.827

PA-ACC (no norm, best) 0.952 0.833

Again we see from Table III that the model trained with
the proposed loss function led to higher accuracy rates with
similar AUC rates, meaning a better separation between the
positive speech utterances and the negative speech utterances.

B. Deep network model

Our second set of experiments is focused on deep networks
trained on weakly supervised data. Our model is based on
previous work on network training using the ranking loss [11],
[12], [13]. We used the same experimental setup as Kamper
et al. (2016)[13]. By using the term weak supervision, we
followed the terminology of [13]. Indeed the term weak refers
to the fact that supervision is given in the form of known
word pairs, rather than the exact location of the term and its
phonetic content as in Subsection VI-A.

The data was taken from the Switchboard corpus of En-
glish conversational telephone speech. Mel-frequency cepstral
coefficients (MFCCs) with first and second order derivatives
features were extracted and cepstral mean and variance nor-
malization (CMVN) was applied per conversation side. The
training set consisted of the set of about 10k word tokens
from [22], [23]; it consisted of word segments of at least
5 characters and 0.5 seconds in duration extracted from a
forced alignment of the transcriptions, and comprises about
105 minutes of speech. For the Siamese convolutional neural
networks (CNNs), this set results in about 100k word segment
pairs. For testing, we used the 11k-token set from [22], [23].

The architecture of each network was the same as Kamper et
al. (2016)[13]: 1-D convolution with 96 filters over 9 frames;
ReLU (Rectified Linear Unit) ; max pooling over 3 units; 1-D
convolution with 96 filters over 8 units; ReLU; max pooling

over 3 units; 2048-unit fully-connected ReLU; 1024-unit fully-
connected linear layer. All weights were initialized randomly.
Models were trained using ADADELTA [24].

We reproduced the results in [13] by training the Siamese
network using the ranking loss in (12) with the cosine simi-
larity as a similarity function ρ. The cosine similarity of two
vectors v1 ∈ Rd and v2 ∈ Rd is defined as

ρcos(v1,v2) =
v>1 v2

‖v1‖‖v2‖
,

where this function returns a number close to 1 if the two
vectors are similar and a number close to -1 if the two vectors
are not. We also train the network using the same similarity
function using the Accθ loss function with θ = 0 as in (13).
For the ranking loss we used γ = 0.15 while for the Accθ
loss we used γ = 0.10. The reason is the margin γ is counted
twice for Accθ loss. These values were chosen by maximizing
Accθ on a validation set over 5 epochs. The AUC and Accθ
values for training of 5 to 30 epochs are given in Table IV.
Other training parameters and settings were exactly the same
as in [13].

We can see in the table that both AUC and Accθ are higher
when the system is trained with the calibrated ranking loss
function. The reason that the AUC was also improved is most
likely because the calibrated ranking loss function is harder
to optimize than the ranking loss. Note that for this corpus
the score Accθ is not close to AUC, meaning there is some
room for further improvements. A possible reason for this
is that while the hypothesis set is rich enough to describe
AUC adequately, it may not be sufficient to express the fixed
threshold needed for Accθ. Further research could focus on
how to direct the network to express more knowledge on the
internal representation of the threshold, in a similar fashion to
the additional set of feature functions manually added to the
structured prediction model.

VII. CONCLUSIONS

In this work, we introduced a new loss function that can
be used to train a spoken term detection system with a
fixed desired threshold for all terms. We introduced a new
discriminative structured prediction model that is based on the
Passive-Aggressive algorithm. We show that the new loss can
be used in training weakly supervised deep network models.
Results suggest that our new loss function yields AUC and
accuracy values that are better than previous works’ results.

In STD research area, the common approach is to use an
LVCSR to transcribe the test corpus to lattices, then apply
retrieval techniques on the lattices. In future work we plan
to report the results of the LVCSR-based technique using the
proposed loss function. Another line of future work will be
focused on optimizing the ATWV score (rather than AUC),
which is a more common score in STD systems.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
suggestions and comments, which helped us to improve the
manuscript. This work was supported by a grant from the
MAGNET program of the Israeli Innovation Authority.

7

TABLE IV
ACCθ AND AUC RESULTS FOR ACOUSTIC WORD EMBEDDING ON SWITCHBOARD DATA, USING VARIOUS AMOUNTS OF EPOCHS. THE TRAINING SETS OF

ALL EPOCHS ARE SUBSETS OF THE 30 EPOCH TRAINING SET.

5 Epochs 10 Epochs 15 Epochs 20 Epochs 25 Epochs 30 Epochs

loss type AUC Accθ AUC Accθ AUC Accθ AUC Accθ AUC Accθ AUC Accθ

ranking loss 0.923 0.703 0.923 0.711 0.925 0.708 0.923 0.707 0.920 0.706 0.925 0.709

Accθ loss 0.981 0.785 0.976 0.757 0.977 0.757 0.978 0.757 0.979 0.761 0.978 0.757

APPENDIX A

In this appendix we provide some theoretical analysis on
our proposed method. We start by showing that the accuracy
Accθ is less than or equal to the AUC for any threshold θ.
This means that minimizing Errθ = 1−Accθ can lead to the
minimization of 1−AUC or equivalently to maximization of
the AUC.

Lemma 1. For any threshold θ ∈ R and the accuracy Accθ
is less than or equal the AUC:

Accθ ≤ AUC. (16)

Proof. Consider the definition of the AUC. In the case in
which there exists a fixed but unknown threshold z for all
possible terms and the corresponding positive and negative
speech segments, the AUC can be written as

P {f(x̄+, r) > z ∧ f(x̄−, r) < z}.

In this case z is the optimal threshold and any other predefined
threshold would result in a lower probability hence

P {f(x̄+, r) > θ ∧ f(x̄−, r) < θ}
≤ P {f(x̄+, r) > z ∧ f(x̄−, r) < z}. (17)

In the case when no threshold z exists, the event defined by
Accθ is still a special case of the event defined by AUC,
and hence its probability is smaller than the probability of
the AUC.

We now state two theorems that show the theoretical prop-
erties of the algorithm in Fig. 1. Our first theorem shows that
the detection function of our algorithm attains high cumula-
tive AUC (defined in (14)) during training. It compares the
cumulative AUC of the weight vectors series, {w1, . . . ,wm},
resulted from the iterative algorithm to the best fixed weight
vector, w?, chosen in hindsight, and essentially proves that,
for any sequence of examples, our algorithm cannot do much
worse than the best fixed weight vector. Formally, it shows that
the cumulative area above the curve, 1− ÂUCtrain, is smaller
than the weighted average loss `(w?; (p̄ri , x̄+

i , x̄
−
i , ȳ

ri)) of
the best fixed weight vector w? and its weighted complexity,
‖w?‖. That is, the cumulative AUC of the iterative training
algorithm is going to be high, given that the loss of the best
solution is small, the complexity of the best solution is small
and that the number of training examples, m, is sufficiently
large.

Theorem 1. Given a training set of examples S =
{(p̄ri , x̄+

i , x̄
−
i , ȳ

ri)}mi=1 we assume that for every x̄, p̄, and
ȳ we have ‖φ(x̄, p̄, ȳ)‖ ≤ 1/2. Let w? be the best weight
vector selected by some optimization criterion by observing
all instances in hindsight, we have

1−ÂUCtrain ≤
3

m
‖w?‖2+

2C

m

m∑
i=1

`(w?; (p̄ri , x̄+
i , x̄

−
i , ȳ

ri)).

(18)
where C ≥ 1 and ÂUCtrain is the cumulative AUC defined
in (14).

We omit the proof of the theorem, which is based on Lemma
1 and similar to the proof of Theorem 1 in [8].

Our second theorem shows that our structured prediction
algorithm generalizes well. That is, the algorithm’s AUC
values on an unseen test set are likely to be similar to its
AUC values during training.

Theorem 2. Under the same conditions of Theorem 1. Assume
that the training set S and the validation set V are both
sampled i.i.d. from a distribution D. Denote by m the size
of the training set, and by mv the size of the validation set.
With probability of at least 1− δ we have

1−AUC ≤ 2C

m

m∑
i=1

`(w?; (p̄ri , x̄+
i , x̄

−
i , ȳ

ri)) (19)

+
3

m
‖w?‖2 +

√
2ln(2/δ)√

m
+

√
2ln(2m/δ)
√
mv

,

where the AUC is defined by (1).

The proof of the theorem goes along the same lines as the
proof of Theorem 2 in [8].

REFERENCES

[1] S. Bengio, J. Mariéthoz, and M. Keller, “The expected performance
curve,” in International Conference on Machine Learning, ICML, Work-
shop on ROC Analysis in Machine Learning, no. EPFL-CONF-83266,
2005.

[2] J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddingtion, “Results of the
2006 spoken term detection evaluation,” in Proc. SIGIR, vol. 7, 2007,
pp. 51–57.

[3] J. Mamou, B. Ramabhadran, and O. Siohan, “Vocabulary independent
spoken term detection,” in Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2007, pp. 615–622.

[4] D. Karakos, R. Schwartz, S. Tsakalidis, L. Zhang, S. Ranjan, T. T. Ng,
R. Hsiao, G. Saikumar, I. Bulyko, L. Nguyen et al., “Score normalization
and system combination for improved keyword spotting,” in Automatic
Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop
on. IEEE, 2013, pp. 210–215.

8

[5] C. Parada, A. Sethy, and B. Ramabhadran, “Query-by-example spoken
term detection for oov terms,” in Automatic Speech Recognition &
Understanding, 2009. ASRU 2009. IEEE Workshop on. IEEE, 2009,
pp. 404–409.

[6] D. R. Miller, M. Kleber, C.-L. Kao, O. Kimball, T. Colthurst, S. A.
Lowe, R. M. Schwartz, and H. Gish, “Rapid and accurate spoken term
detection,” in Eighth Annual Conference of the International Speech
Communication Association, 2007.

[7] O. Vinyals and S. Wegmann, “Chasing the metric: Smoothing learning
algorithms for keyword detection,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Conference on. IEEE,
2014, pp. 3301–3305.

[8] J. Keshet, D. Grangier, and S. Bengio, “Discriminative keyword spot-
ting,” Speech Communication, vol. 51, no. 4, pp. 317–329, 2009.

[9] R. Prabhavalkar, J. Keshet, K. Livescu, and E. Fosler-Lussier, “Discrim-
inative spoken term detection with limited data,” in The 2nd Symposium
on Machine Learning for Speech and Language Processing, 2012.

[10] R. Prabhavalkar, K. Livescu, E. Fosler-Lussier, and J. Keshet, “Discrim-
inative articulatory models for spoken term detection in low-resource
conversational settings,” in Proc. of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 8287–
8291.

[11] D. Grangier and S. Bengio, “Learning the inter-frame distance for
discriminative template-based keyword detection,” in International Con-
ference on Speech Processing (INTERSPEECH), 2007.

[12] S. Bengio and G. Heigold, “Word embeddings for speech recognition.”
in INTERSPEECH, 2014, pp. 1053–1057.

[13] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional acoustic
word embeddings using word-pair side information,” in Acoustics,
Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on. IEEE, 2016, pp. 4950–4954.

[14] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve.” Radiology, vol. 143, no. 1,
pp. 29–36, 1982.

[15] D. Bamber, “The area above the ordinal dominance graph and the
area below the receiver operating characteristic graph,” Journal of
mathematical psychology, vol. 12, no. 4, pp. 387–415, 1975.

[16] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive aggressive algorithms,” Journal of Machine Learning
Research, vol. 7, pp. 551–585, 2006.

[17] O. Dekel, J. Keshet, and Y. Singer, “Large margin hierarchical classifi-
cation,” in Proceedings of the Twenty-First International Conference on
Machine Learning (ICML), 2004.

[18] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “On the generalization
ability of on-line learning algorithms,” IEEE Transactions on Informa-
tion Theory, vol. 50, no. 9, pp. 2050–2057, September 2004.

[19] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in Computer
Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, vol. 1. IEEE, 2005, pp. 539–546.

[20] V. Vapnik, The nature of statistical learning theory. Springer science
& business media, 2013.

[21] D. B. Paul and J. M. Baker, “The design for the wall street journal-based
csr corpus,” in Proceedings of the workshop on Speech and Natural
Language. Association for Computational Linguistics, 1992, pp. 357–
362.

[22] A. Jansen, S. Thomas, and H. Hermansky, “Weak top-down constraints
for unsupervised acoustic model training.” in ICASSP, 2013, pp. 8091–
8095.

[23] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsupervised
neural network based feature extraction using weak top-down con-
straints,” in Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, 2015, pp. 5818–5822.

[24] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

