Large Margin Hierarchical Classification

Ofer Dekel OFERD@CS.HUJI.AC.IL
Joseph Keshet JKESHET@CS.HUJI.AC.IL
Yoram Singer SINGER@CS.HUJI.AC.IL

School of Computer Science and Engineering, The Hebrewddsity, Jerusalem, 91904, Israel

Abstract chy and the open directory project (ODP) classify Internet
web-sites to categories which reside in a tree. The labels
in this tree entertain a special semantic, namely, if arrinte
nal vertex in the tree represents some topic then its cimldre
will correspond to refinements of this topic. As an exam-
ple, the vertex in the Yahoo! hierarchy representing the
topic Sports points to numerous sub-topics suclCaiket,
Curling, andCanoeing Following the link to the sub-topic
Curling we find that it points to numerous sub-sub-topics
such agquipmenaindTournamentsEach of these topics,

as well as most of the topics in the Yahoo! hierarchy, is as-
sociated with a set of webpages. A second notable example
is speech phoneme classification. Short speech utterances
are typically divided into phonetic classes. Phonetic theo

of spoken speech embed the set of phonemes of western
languages in a phonetic hierarchy where the phonemes are
leaves of the tree and broad phonetic groups, such as vow-
els and consonants, are internal vertices. In this paper we
conduct experiments with these two hierarchical problems.

We present an algorithmic framework for su-
pervised classification learning where the set of
labels is organized in a predefined hierarchical
structure. This structure is encoded by a rooted
tree which induces a metric over the label set.
Our approach combines ideas from large mar-
gin kernel methods and Bayesian analysis. Fol-
lowing the large margin principle, we associate a
prototype with each label in the tree and formu-
late the learning task as an optimization problem
with varying margin constraints. In the spirit of
Bayesian methods, we impose similarity require-
ments between the prototypes corresponding to
adjacent labels in the hierarchy. We describe new
online and batch algorithms for solving the con-
strained optimization problem. We derive a worst
case loss-bound for the online algorithm and pro-
vide generalization analysis for its batch counter-
part. We demonstrate the merits of our approach  The problem of hierarchical classification, in particular h
with a series of experiments on synthetic, text erarchical document classification, has been tackled by nu-
and speech data. merous researchers (see for instance (Koller & Sahami,
1997; McCallum et al., 1998; Weigend et al., 1999; Du-
mais & Chen, 2000)). Most previous work on hierarchical
1. Introduction classification decouples the problem into independent clas
Multiclass categorization problems are concerned with theSiﬁcat.ion problems by assigr?ing and training a classifier fo
. each internal vertex in the hierarchy. To accommodate the
Lemantics imposed by the hierarchical structure, some re-

the set of Iabe_lg ha_s no L_mderlymg structure and therefprﬁveen the probabilistic models for adjacent vertices in the
different classification mistakes are of the same Sevemyhierarchy (e.g. (McCallum et al., 1998)). In probabilistic
However, in many natural machlne learning problems thesettings, statistical similarities can be enforced usaunt
set of labels is structured and different types of mlsclas—niques such as back-off estimates (Katz, 1987) and shrink-
sifications should be treated differently. In this paper we ’

. age (McCallum et al., 1998).
focus on a particular type of structure over labels, namely ge ( )

a hierarchical one. In hierarchical classification the $et oA significant amount of recent work on classification prob-

labels is arranged in a predefined hierarchy which takes thiems, both binary and multiclass, has been devoted to the
form of a rooted tree. For instance, both the Yahoo! hierartheory and application of large margin classifiers. See
_ ] ) for instance the book of Vapnik (1998) and the references
Appearing inProceedings of the21** International Conference therein. In this paper, we describe, analyze, and apply a

Machine L ingBanff, Canada, 2004. C ight 2004 b . . . e .
?hne aﬁﬁu;?s eamingsant, Lanaca opynd y large margin approach to hierarchical classification which



is in the spirit of statistical approaches. As in large margi vertices arranged in a rooted trée We denote: = |}/,
methods, we associate a vector in a high dimensional spader concreteness we assume that= {0,...,k — 1} and
with each label in the hierarchy. We call this vectorpine-  let 0 be the root of7 .

totypeof the label, and classify instances according to their, . -
similarity to the various prototypes. We relax the require—FOr any pair of labels, v € , lety(u, v) denote their dis

L ) .~ tance in the tree. Thatis,(u, v) is defined to be the num-
ments of correct classification to large margin constramtsDer of edges along the (unique) path frarto v in 7. The
and attempt to find prototypes that comply with these CONictance functiony(-, ) is in fact a metric ovep) siﬁce it
straints. In the spirit of Bayesian methods, we impose sim- '

ilarity requirements between the prototypes correqundlnIS anon n_egatwg functpm(v, v) =0, 7(u, 1?) V(U’_u)
. . : . and the triangle inequality always holds with equality. As
to adjacent labels in the hierarchy. The result is an algo- . e o . .
stated above, different classification errors incur défer

rithmic solution that may tolerate minor mistakes, such aavels of penalty, and in our model this penalty is defined

predicting a sibling _of _the correct _Iabel, but av0|ds_ gross;by the tree distance(u, v). We therefore say that these
errors, such as predicting a vertex in a completely differen. ; _
part of the tree. induced errorincurred by predicting the label when the

correct label isu is vy (u, v).
Many hierarchical datasets contains a very large number q}}v . - .

. . 7 receiv rainin = i, yi)}m, of instance-
examples. For instance, the file containing just the ODP € receive a training sef = {(xi, y;)}i, of instance

. : . . label pairs, wher , € X an ; . r

hierarchy itself, without the documents, is 250Mb long. To abe_pa S, ere eac_h_z cAa d _eacryl €Yy Qu

. ) ; goal is to learn a classification functigh: X — ) which

cope with large amounts of data we devise an online algo® ~. ; .

; : - . . attains a small tree induced error. We focus on classifiers
rithm that is both memory efficient and simple to imple-

I : ) ; . _that are of the following form: each label € ) has a

ment. Our algorithmic solution builds on the pioneering . 0
: matching prototypdV® € R™, whereW?" is fixed to be
work of Warmuth and colleagues. In particular, we gener-
) . . the zero vector and every other prototype can be any vector
alize and fuse ideas from (Crammer et al., 2003; Herbsteﬁh R". The classifierf makes its predictions according to
2001; Kivinen & Warmuth, 1997). These papers discussthe fo.II P 9

online learning of large-margin classifiers. On each round, owing rule,

the online hypothesis is updated such that it complies with f(x) = argmax W -x . 1)
margin constraints imposed by the example observed on veY

this round. Along with the margin constraints, the updaterps task  of learning / is reduced to learning

is required to keep the new classifier fairly close to the preyy/1 k-1,

vious one. We show that this idea can also be exploited =~

in our setting, resulting in a simple online update whichFor every label other than the tree raote {Y \ 0}, we
can be used in conjunction with kernel functions. Further-denote byA(v) the parentof in the tree. Put another way,
more, using methods for converting online to batch learn-A(v) is the vertex adjacent towhich is closer to the tree
ing (e.g. (Cesa-Bianchi et al., 2004)), we show that the ont0ot 0. We also defined”) (v) to be theith ancestor of
line algorithm can be used to devise a batch algorithm witHif such an ancestor exists). Formally(")(v) is defined
theoretical guarantees and good empirical performance. recursively as follows,

The paper is organized as follows. In Sec. 2 we formally ~ A@(v)=v and AD(v) = AATD (v)) .

describe the hierarchical classification problem and estab :

lish our notation. Sec. 3 constitutes the algorithmic core ©F €ach label € Y, defineP(v) to be the set of labels

of the paper. In this section we describe an online algo/0ng the path from (the tree roo) ta,

rithm, calledonline Hieron for hierarchical classification _ o )

and prove a worst case bound on its performance. In Sec. 4 P(v) = {“ €Y Jiu=A (U)}

we describe a conversion of the online Hieron into a well

performing batch algorithm, thieatch Hieron In Sec. 5  For technical reasons discussed shortly, we prefer not to

we conclude the paper with a series of experiments on syrdeal directly with the set of prototypd%°, ..., W*~1 put

thetic data, a text corpus, and speech data. rather with the difference between each prototype and the
prototype of its parent. Formally, defire’ to be the zero

2. Problem Setting vector inR™ and for each labal € Y\ 0, letw?” = W" —
WA®)  Each prototype now decomposes to the sum

Let X C R™ be an instance domain and [¥tbe a set of

labels. In the hierarchical classification settidigplays a W=y Wt (2)

double role: first, as in traditional multiclass problents, i u€P(v)

encompasses t_he set of labels, namely ea<_:h Instante in rpq classifierf can be defined in two equivalent ways:

is associated with a labele ). Second) defines a set of by setting {W"},cy and using Eq. (1), or by setting



{w"},cy and using Eqg. (2) in conjunction with Eq. (1). such a set is found. However, the tree-induced error is a
Throughout this paper, we often u§e*},cy as a syn- combinatorial quantity and is thus difficult to minimize di-
onym for the classification functiofi. As a design choice, rectly. We instead use a construction commonly used in
our algorithms require that adjacent vertices in the labelarge margin classifiers and employ the the convex hinge-
tree have similar prototypes. The benefit of representloss function

ing each prototypd W*},cy as a sum of vectors from

{w"},cy is that adjacent prototypéd® and WA®) can C({w'lxy) =

be kept close by simply keeping? = W? — WA®)

small. Sec. 3 and Sec. 4 address the task of learning the Zwv ‘x - Zwv x4+ Vw9 | . (5)

set{w"},cy from labeled data. veP(3) veP(y) .

. . where [z]+ = max{z,0}. In the sequel we show that
3. An Online Algorithm 22 ({w"},x,y) upper bounds(y,9) and use this fact to

: l N
In this section we derive and analyze an efficient online2ttain abound o ;= , ¥(yi, 9)-

learning algorithm namednline Hieronfor the hierarchi-  The online Hieron algorithm belongs to the familyafn-

cal classification problem. In online settings, learning&®  servativeonline algorithms, which update their classifica-
place in rounds. On roundan instance, denoted, is pre-  tjon rules only on rounds on which prediction mistakes are
sented to the learning algorithm. Hieron maintains a set ofnade. Let us therefore assume that there was a prediction
prototypes which is constantly updated in accordance withnistake on round. We would like to modify the set of vec-

the quality of its predictions. We denote the set of proto-tors {w?} so as to satisfy the margin constraints imposed
types used to extend the prediction on roubgt {w;' }.cy. by theith example. One possible approach s to simply find
Therefore, the prediction of Hieron fey; is, a set of vectors that solves the constraints in Eq. (4) (Such a
set must exist since we assume that there exists f.§gt
which satisfies the margin requirements &br of the ex-
amples.) There are however two caveats in such a greedy

Then, the correct labgj, is revealed and the algorithm suf- approach. The firstis that by setting the new set of proto-
fers an instantaneous error. The error that we employ in thi§/Pes to be an arbitrary solution to the constraints imposed

paper is the tree induced error. Using the notation abovedy the most recent example we are in danger of forgetting
the error on round equalsy(y;, 7:). what has been learned thus far. The second, rather techni-
) o ] cal, complicating factor is that there is no simple anaftic
Our analysis, as well as the motivation for the online up-so|ytion to Eq. (4). We therefore introduce a simple con-
date that we derive below, assumes that there exists a set gf 5ined optimization problem. The objective function of

prototypes{w” }..cy such that for every instance-label pair s optimization problem ensures that the new{set, , }

¥; = argmax W, -X; = argmax Z wi-x;. (3)
veY veEY (

(xi,y:) and everyr # y; it holds that, is kept close to the current set while the constraints ensure
that the margin requirement for the péir;, 9;) is fulfilled
v » . — u » . . ’
Y. W' 2 WX = V) - @) by the new vectors. Formally, the new set of vectors is the
vEP(ys) u€P(r) solution to the following problem,
The above difference between 1 . oo
the projection onto the proto- . g Do lw —wyl (6)
type corresponding to the cor- vey
rect label and any other proto- ' \ s.t. Z w'x; — Z w - x; > /(i i) -
type is a generalization of the - veP(yi) wEP(95)
nothn of margin employed by y{ﬁ/ First, note that any vectow” corresponding to a vertex
multiclass problems (Weston Rt . . .
: . SN / S v that does not belong to neith&(y;) nor P(g;) does
& Watkins, 1999). Put in- _.» \. ... o ;o
formally, we require that the i+ O not change due to the objectlve_ function in Eq. (6), hence,
’ v wY, , = w{. Second, note that if € P(y;) N P(y;) then

margin between the correct
and each of the incorrect la-
bels be at least the square-root
of the tree-based distance be-
tween them. The goal of the
Hieron algorithm is to find a
set of prototypes which fulfills the margin requirement of To find the solution to Eqg. (6) we introduce a Lagrange
Eq. (4) while incurring a minimal tree-induced error until multiplier «;, and formulate the optimization problem in

the contribution of thew cancels out. Thus, for this case
Figure 1 Anillustration of ~ as well we get thaw}, ;, = wy. In summary, the vectors
the update: only the ver- that we need to actually update correspond to the vertices
tices depicted using solid in the setP(y;)AP(7;) whereA designates the symmetric
lines are updated. difference of sets (see also Fig. 1).



Algorithm 1 Online Hieron similarly w; = (w?,...,wF~!) fori > 1. We denote by
Initialize: Vo e Y:w!l =0 0; the difference between the squared distaRgdrom
fori=1,2,...m and the squared distancewf,; from @,

e Receive an instance

e Predict:jj; = arg max,cy Zue'P(v) wi X,
e Receive the correct labg]

o Sufferloss ({w}},x;,y;) [see Eq. (5)]

i = ||wi — @l — |Wiy1 — @|?

We now derive upper and lower bounds®if" , d;. First,
note that by summing ovéwe obtain,

e Update:

v Wl - . s n ks
W:‘)—Q—l = W:} + a;X; NS /P(?{z)\P(yz) Z 5 = Z ||Wz o Q”Q - ||Wi+1 . QHQ
Wit1 = W; — QX v € P(§:)\P(y:) i=1 i=1

_ 2 _ — 112 — — 1|2
= — — — < — .
where ot 1971 = @[ = (W — @[ < (%1 — &
i = Y(yi, i) |2 Our initialization setsv; = 0 and thus we get,
m
| o Yoo < @l = D ©)
the form of a Lagrangian. We set the derivative of the La- i=1 veY

rangian w.r.t{w"} to zero and get, _ . .
grang {w'} g This provides the upper bound 9n, §;. We next derive

Wi =w +aix; v e Py)\P(i) a lower bound on eachy. The minimizer of the problem
Wl = w! - aix; v e PEN\Pw) . (7) Qeflned by Eq.. (6) is obtalneq by prOJectl{lgrf;} onto the
linear constraint corresponding to our margin requirement
Since at the optimum the constraint of Eq. (6) is bindingThe result is a new s€tw;, ; } which in the above notation
we get that, can be written as the vectev, ;. A well known result (see
for instance (Censor & Zenios, 1997), Thm. 2.4.1) states
D (Witaixi)xi = Y (WP —ix;)-x;+/v(yi, §).  thatthis vector satisfies the following inequality,
vEP(yi) veEP(Ji) _ 12 _ 12 _ _ 9
, _ _ , [Wi —@[]" = [Wiy1 — @fIF = [[Wi — Wit |
Rearranging terms in the above equation and using the def-

inition of the loss from Eq. (5) we get that, Hence, we get thad; > |[w; — w;41>. We can now
) R take into account thatvy is updated if and only it €
o |%ill” [P(yi) AP ()| = (Wi}, i, ui) - P(yi)AP(3;) to get that,
Finally, noting that the cardinality & (y; ) AP(§;) is equal == 2 _ v v (12
toy(y:, §;) we get that, Wi = Wi g"wl Wil

o = 6({w;i}—,xz,y12) 8) Z [wi —wi
Y (yi» i) ||1%]| VEP(y:) AP (i)

The pseudo code of the online learning algorithm is giverPlugging Eq. (7) into the above, we get
in Algorithm 1. The following theorem implies that the

cumulative loss suffered by online Hieron is bounded as Z [wy—wig|? = Z o? ||z

long as there exists a hierarchical classifier which fulfills veP(y,)AP(9,) vEP(y:) AP (§:)

the margin requirements on all of the examples. = [Py AP o2 |i]?
3

Theorem 1. Let {(x;,y;)}™, be a sequence of examples — L 0) o ||z
g X ’7(915 Yi) O || T
wherex; € X C R" andy; € Y. Assume there exists a
set{w" : Vv € YV} that satisfies Eq. (4) forall <i <m.  We now use the definition of; from Eq. (8) to obtain the

[

Then, the following bound holds, lower bound,
- C ({wil xi,yi)
2({wihxisw) < o2 2 5 > —— L En
Z;g o) = %Hw o & Y(Wi, 9i) ||

Using the assumptioni; || < R andy(yi, 3i) < Ymaz We

where for alli, ||x;|| < Rand~(y:, 9:) < Ymaz- can further bound; by

Proof. As a technical tool, we denote hy the concate- - 2wy, xi, yi)

: . _ _ 0
nation of the vectors ifw"}, @ = (w°,...,w*"!) and i = s B2



Now, summing over ali and comparing the lower bound 4. Batch Learning and Generalization

given above with the upper bound of Eqg. (9) we get, ) ) _ )
In the previous section we presented an online algorithm

S 2 (WU X, i) m . for hie_rarchicgl multicl_ass Iearning._ However, many com-
= “he < D6 < Dl mon hierarchical multiclass tasks fit more naturally in the
Ymaz t= vEY batch learning setting, where the entire training Set
{(xs,y:)}1*, is available to the learning algorithm in ad-

Multiplying both sides of the inequality above by, R

: g vance. As before the performance of a classifieon a
gives the desired bound. O

given examplex, y) is evaluated with respect to the tree-

. induced errory(y, f(x)). In contrast to online learning,
The loss bound of Thm. 1 can be straightforwardly transwhere no assumptions are made on the distribution of ex-
lated into a bound on the tree-induced error as followsamples, we now assume that the examples are indepen-
Note that whenever a prediction error occugs & 7:),  dently sampled from a distributioP over X x ). Our

thend  cp) Wi * Xi =2 Xyepy Wi - Xi- Thus, the  goal is to useS to obtain a hierarchical classifigrwhich
hinge-loss defined by Eq. (5) is greater thaﬁ);(yi,:&i)- attains a lowexpectedree-induced errorE [y(y, f(x))],
Since we suffer a loss only on rounds were prediction erwhere expectation is taken over the random selection of ex-

rors were made, we get the following corollary. amples fronD.

Corollary 1. Under the conditions of Thm. 1 the following Perhaps the simplest idea is to use the online Hieron algo-

bound on the cumulative tree-induced error holds, rithm of Sec. 3 as a batch algorithm by applying it to the
. training setS in an arbitrary order and definingto be the
ZV Yir ) Z 6 |1% Yrmas B2 . (10) last classifier obtained by this process. The resulting clas
— = sifier is the one defined by the vector get;, , ;},ey. In

practice, this idea works reasonably well, as demonstrated
by our experiments (Sec. 5). However, a variation of this
fdea yields a significantly better classifier with an accompa
nying generalization bound. First, we slightly modify the

To conclude the algorithmic part of the paper, we note tha
Mercer kernels can be easily incorporated into our algo

rithm. First, rewrite the update as},, = w; + a;x online algorithm by selecting; to be the label which max-
where, imizes Eq. (5) instead of selectirfg according to Eq. (3).
a; v e Py)\PH) In (_)ther Words_, the modified algorithm predict_s the Iz_ipel
=4 —a; vePHN\Py) . which causes it to suffer the greatest loss. This modifica-
' 0 otherwise tion is possible since in the batch settipgs available to us

beforey; is generated. It can be easily verified that Thm. 1
Using this notation, the resulting hierarchical classifian ~ and its proof still hold after this modifications$ is pre-

be rewritten as, sented to the modified online algorithm, which generates
the set of vector§w? }, ,,. Now, for everyv € Y define
fo = angmac 30 wixo QD -
ueP(v) wl=—) w, (13)
m+1 p
= argmax XX . 12 . . .
g;ey uezpjv) ; (12) and letf be the multiclass classifier defined bw"},cy

with the standard prediction rule in Eq. (3). We have set
We can replace the inner-products in Eq. (12) with a genthe prototype for labeb to be the average over all proto-
eral kernel operatoK (-, -) that satisfies Mercer's condi- types generated by the online algorithm for label We
tions (Vapnik, 1998). It remains to show thaj can be name this approach tieatch Hieronalgorithm. For a gen-
computed based on kernel operations wheneyee4 0. eral discussion on taking the average online hypothesis see
To see this, note that we can rewriig from Eq. (8) as  (Cesa-Bianchi etal., 2004).

a; = [Bi], /ni where In our analysis below, we use Eg. (13) to define the clas-

sifier generated by the batch Hieron algorithm. However,

Bi = Z Z af K (xj,%;) — an equivalent definition can be given which is much easier
vEP(§:) 7<i to implement in practice. As stated in the previous section,
Z Z QK (x5, %) + 7(yir 5i) each vectow} can be represented in dual form by
’UEP(yi) i<t 3

N w; = aix; . (14)
andn; = v(ys, i) K (xi, x;). g; ’



As a result, each of the vectors {w"},cy can also be
represented in dual form by

1 m—+1

w'=— (m+2—14)afx; .
m+1 =

(15)

Therefore, the output of the batch Hieron becomes

m+1

argmax Z Z (m+2—1)afx;-

vey u€P(v) =1

f)

Theorem 2. Let S = {(x;,y;)}™, be a training set sam-
pled i.i.d from the distributiorD. Let{w"},cy be the vec-
tors obtained by applying batch Hieron & and letf de-
note the classifier they define. Assume there ¢xis} ,cy
that define a classifief* which attains zero loss afi. Fur-
thermore, assume thdt, B and~,,.« are constants such
that |x|| < Rforall x € X, ||| < Bforallv € ),
~(+,-) is bounded by.,..x. Then with probability of at least
1-9,

21og(1/0)

L
+)\+)\
m+1

({Wz)}v Xis y’L) and\ = kBQRQ'Ymax-

Exy)~p [7(y, f(%))] <

wherel = Y7, (2

)

Proof. For any exampléx, y) it holds thaty(y, f(x)) <

Taking expectations on both sides of this inequality, we get

m+1

ZE o (w73, )]
(16)

Recall that the modified online Hieron suffers a loss
of lmax({W?Y},x;,9;) on roundi. As a direct conse-
guence of Azuma’s large deviation bound (see for in-
stance Thm. 1 in (Cesa-Bianchi et al., 2004)), the sum
S E 2 ({wP}, x,y)] is bounded above with prob-
ability of at leastl — ¢ by,

E [ ({w"},x,y)]

L4 mA 21og(1/9) 7
m

As previously stated, Thm. 1 also holds for the modified
online update. It can therefore be used to obtain the bound
2 ({wo 1}, x,y) < Xand to conclude that,

Jas 21og(1/6)
e

ZE max {thX,y)} <L+ A+mA

Dividing both sides of the above inequality by + 1,
we have obtained an upper bound on the right hand
side of Eq. (16), which gives us the desired bound on
E [62({w“}, X, y)} O

2({w"},x,y), as discussed in the previous section. UsingThm. 2 is a dataependengrror bound as it depends @h

this fact, it suffices to prove a bound &8¢ ({w*}, x, y)]
to prove the theorem. By definitiof? ({w"}, x, y) equals

2

> whex+ /(Y f(x))

veEP(y)

+1
T i1 W

E WU'X—

vEP(f(x)) N

Therefore this

By construction,w”
loss can be rewritten as
2

1 m+1 ) )
rew DN D DRCEND DS EESCH I
i=1 \weP(f(x)) veEP(y) +
whereC' = /v(y, f(x)). Using the convexity of the func-

tion g(a) = [a+ C]3 together with Jensen’s inequality, we
can upper bound the above by

E v
Wi X —

veP(f(x))

1 m—+1

m—+1 p

> wiix+C

veP(y) +

Let £ax({W"}, x,y) denote the maximum of Eq. (5) over
all § € Y. We now usé€/,,,, to bound each of the sum-
mands in the expression above and obtain the bound,

m+1

Z emax {W;}}’X7 y)

C{w"}x,y)

We would like to note in passing that a datalependent
bound orE[v(y, f(x))] can also be obtained by combining
Thm. 2 with Thm. 1. As stated above, Thm. 1 holds for
the modified version of the online Hieron described above.
The data independent bound is derived by repladig
Thm. 2 with its upper bound given in Thm. 1.

5. Experiments

We begin this section with a comparison of the online and
batch variants of Hieron with standard multiclass classifie
which are oblivious to the hierarchical structure of the la-
bel set. We conducted experiments with a synthetic dataset,
a dataset of web homepages taken from the Open Direc-
tory Project (ODP/DMOZ), and a data set of phonemes ex-
tracted from continuous natural speech. The synthetic data
was generated as follows: we constructed a symmetric tri-
nary tree of depth 4 and used it as the hierarchical struc-
ture. This tree contains21 vertices which are the labels

of our multiclass problem. We then sef’, ..., w!20 to

be some orthonormal set&i?!, and defined th&21 label
prototypes to béwv®v Zuep (v) W We generated00

train instances and0 test instances for each label. Each
example was generated by settibgy) = (WY + n,y),
wheren is a vector of Gaussian noise generated by ran-
domly drawing each of its coordinates from a Gaussian dis-
tribution with expectatio and varianc®.16. This dataset



Table 1.0nline Hieron results. Table 2.Batch Hieron results.

Data set Tree induced Multiclass Data set Tree induced err.  Multiclass err.
error error Last Batch Last Batch
Synthetic data (tree) 0.83 44.5 Synthetic data (tree)  0.04 0.05 4.1 5.0
Synthetic data (flat) 1.35 511 Synthetic data (flat) 0.14 0.11 10.8 8.6
DMOZ (tree) 3.62 75.9 Synthetic data (greedy) 0.57 0.52 37.4 34.9
DMOZ (flat) 4.10 75.4 DMOZ (tree) 3.12 2.60 69.8 62.6
Phonemes (tree) 1.64 40.0 DMOZ (flat) 3.56 2.89 70.2 61.6
Phonemes (flat) 1.72 39.7 DMOZ (greedy) 3.86 3.14 81.8 74.3
Phonemes (tree) 1.88 1.30 48.0 40.6
Phonemes (flat) 2.01 1.41 48.8 418
Phonemes (greedy) 3.22 2.48 73.9 58.2

is referred to asynthetidn the figures and tables appearing
in this section.
(()alxploiting the label hierarchy, we also trained and eval-

lected from the World Wide Web. We used the Open Di_uated _standard multiclass predlct(_)_rs which \ghore the h"
erarchical structure. These classifiers were trained using

rectory Project (ODP/DMOZ) to construct the label hier- Hieron but with a "flattened” version of the label hierar-

archy. DMOZ.'S a cqmprehenswe. human—edlted dlrectorych . The (normalized) cumulative tree-induced error and
of the web which defines a huge hierarchical structure ovef

thousands of webpage topics. We extracted a subsatof he percentage of multiclass errors for each experiment are

vertices from the hierarchy, arranged in a tree of maXimafg;':éﬂaer;(zeedrime-;?g)leRloé\(/)snlrlr?aerlfexcﬁ)ﬂ?;emrzgfioa&i Tz;tr)-le 2
depth8. The top level topics arérts, Shopping Sports P : P

. . : formance of the Hieron algorithm, while rows marked by
andComputersAn example of a typical path in our hierar- . . .
. . flat refer to the performance of the classifier trained with-
chy is: Top— Computers— Hardware — Peripherals—

Printers — Supplies— Laser Toner Most of the internal out knowledge of the hierarchy. The results clearly indi-

nodes and all of the leaves in the hierarchy point to WWW.Cate that _explomng th_e hierarchical structure is be_' afici
i in achieving low tree-induced errors. In all experiments,
documents. We used a bag-of-words variant to represent ; . : .
L both online and batch, Hieron achieved lower tree-induced

each document and usédold cross validation to evaluate

. ) error than its "flattened” counterpart. Furthermore, in jnan

the performance of the algorithms on this dataset. ) ) )
cases the multiclass error of Hieron is also lower than the

The last dataset used in our experiments is a corpus of corrror of the corresponding multiclass predictor, although
tinuous natural speech for the task of phoneme classifithe latter was explicitly trained to minimize the error. $hi
cation. It has been previously established that phonemdsehavior exemplifies that employing a hierarchical label
form an acoustic hierarchy (Deller et al., 1987; Rabiner &structure may prove useful even when the goal is not nec-
Schafer, 1978). For instance, the phoneme /b/ (a®gjn  essarily the minimization of some tree-based error.
is acoustically closer to the phoneme /d/ (aslad), than

The second dataset is a set of 8576 Internet homepages ¢

The last examination of results further demonstrates that

for instance to the phoneme /ow/ (asaat). In general, . . )
. - ieron tends to tolerate small tree-induced errors while
stop consonants are acoustically similar to each other and .. . : .
f%v0|d|ng large ones. In Fig. 2 we depict the differences

rather dissimilar to vowels. The data we used is a SUbSeoetween the error rate of batch Hieron and the error rate of
of the TIMIT acoustic-phonetic dataset, which is a phonet-

. . . . X a standard multiclass predictor. Each bar corresponds to a
ically transcribed corpus of high quality continuous sgreec different value ofy(y, §), starting from the left with a value
spoken by North American speakers (Lemel et al., 1986) Y:4)s g

Mel-frequency cepstrum coefficients (MFCC) along with of 1 andA endl_ng on the right Wlt.h the Iarges’F possible value
o Lo of v(y, 9). Itis clear from the figure that Hieron tends to

their first and the second derivatives were extracted from . ,, - o
: make "small” errors by predicting the parent or a sibling
the speech in a standard way, based on the ETSI standar :
N " of the correct vertex. On the other hand Hieron seldom

for distributed speech recognition (ETSI, 2000) and each Cos ) .
: chooses a vertex which is in an entirely different part of the

feature vector was generated from 5 adjacent MFCC vec:

. Lo . tree, thus avoiding large tree induced errors. Examiniag th
tors (with overlap). The TIMIT corpus is divided into a results for the DMOZ dataset, we see that46p, §) < 6

training set and a test set in such a way that no speakeE e frequency of errors of Hieron is greater than that of the

from the training set appear in the test set (speaker Inderhulticlass; predictor while Hieron beats its multiclassicou

pendent). We randomly selected 2000 training mStancePerpart fory(y.4) > 6. In the phoneme classification task,
and 500 test instances per each of the 40 phonemes. . o .

Hieron seldom extends a predictigsuch thaty(y, j) = 9
We trained and tested the online and batch versions of Hiwhile the errors of the multiclass predictor are uniformly
eron on all three datasets. To demonstrate the benefits distributed.
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