
Kernel Design using Boosting

Koby Crammer Joseph Keshet Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{kobics,jkeshet,singer}@cs.huji.ac.il

Abstract

The focus of the paper is the problem of learning kernel operators from
empirical data. We cast the kernel design problem as the construction of
an accurate kernel from simple (and less accurate) base kernels. We use
the boosting paradigm to perform the kernel construction process. To do
so, we modify the booster so as to accommodate kernel operators. We
also devise an efficient weak-learner for simple kernels that is based on
generalized eigen vector decomposition. We demonstrate the effective-
ness of our approach on synthetic data and on the USPS dataset. On the
USPS dataset, the performance of the Perceptron algorithm with learned
kernels is systematically better than a fixed RBF kernel.

1 Introduction and problem Setting

The last decade brought voluminous amount of work on the design, analysis and experi-
mentation of kernel machines. Algorithm based on kernels can be used for various ma-
chine learning tasks such as classification, regression, ranking, and principle component
analysis. The most prominent learning algorithm that employs kernels is the Support Vec-
tor Machines (SVM) [1, 2] designed for classification and regression. A key component
in a kernel machine is akernel operatorwhich computes for any pair of instances their
inner-product in some abstract vector space. Intuitively and informally, a kernel operator
is a means for measuring similarity between instances. Almost all of the work that em-
ployed kernel operators concentrated on various machine learning problems that involved
a predefinedkernel. A typical approach when using kernels is to choose a kernel before
learning starts. Examples to popular predefined kernels arethe Radial Basis Functions and
the polynomial kernels (see for instance [1]). Despite the simplicity required in modifying
a learning algorithm to a “kernelized” version, the successof such algorithms is not well
understood yet. More recently, special efforts have been devoted to crafting kernels for
specific tasks such as text categorization [3] and protein classification problems [4].

Our work attempts to give a computational alternative to predefined kernels by learning
kernel operators from data. We start with a few definitions. LetX be an instance space.
A kernel is an inner-product operatorK : X × X → R. An explicit way to describeK
is via a mappingφ : X → H fromX to an inner-products spaceH such thatK(x, x′) =
φ(x)·φ(x′). Given a kernel operator and a finite set of instancesS = {xi, yi}mi=1, the kernel
matrix (a.k.a the Gram matrix) is the matrix of all possible inner-products of pairs fromS,
Ki,j = K(xi, xj). We therefore refer to the general form ofK as the kerneloperatorand
to the application of the kernel operator to a set of pairs of instances as the kernelmatrix.



The specific setting of kernel design we consider assumes that we have access to a
base kernel learnerand we are given atarget kernel K⋆ manifested as a kernel ma-
trix on a set of examples. Upon calling the base kernel learner it returns a kernel op-
erator denoteKj. The goal thereafter is to find a weighted combination of kernels
K̂(x, x′) =

∑

j αjKj(x, x′) that is similar, in a sense that will be defined shortly, to

the target kernel,̂K ∼ K⋆. Cristianini et al. [5] in their pioneering work on kernel target
alignment employed as the notion of similarity the inner-product between the kernel ma-
trices< K, K ′ >F =

∑m

i,j=1 K(xi, xj)K
′(xi, xj). Given this definition, they defined the

kernel-similarity, or alignment, to be the above inner-product normalized by the norm of

each kernel,Â(S, K̂, K⋆) =
(

< K̂, K⋆ >F

)

/

√

< K̂, K̂ >F < K⋆, K⋆ >F , whereS

is, as above, a finite sample ofm instances. Put another way, the kernel alignment Cris-
tianini et al. employed is the cosine of the angle between thekernel matrices where each
matrix is “flattened” into a vector of dimensionm2. Therefore, this definition implies that
the alignment is bounded above by1 and can attain this value iff the two kernel matrices
are identical. Given a (column) vector ofm labelsy whereyi ∈ {−1, +1} is the label
of the instancexi, Cristianini et al. used the outer-product ofy as the the target kernel,
K⋆ = yyT . Therefore, an optimal alignment is achieved ifK̂(xi, xj) = yiyj . Clearly,
if such a kernel is used for classifying instances fromX , then the kernel itself suffices to
construct an excellent classifierf : X → {−1, +1} by setting,f(x) = sign(yiK(xi, x))
where(xi, yi) is any instance-label pair. Cristianini et al. then deviseda procedure that
works with both labelled and unlabelled examples to find aGram matrixwhich attains a
good alignment withK⋆ on the labelled part of the matrix. While this approach can clearly
construct powerful kernels, a few problems arise from the notion of kernel alignment they
employed. For instance, a kernel operator such that thesign(K(xi, xj)) is equal toyiyj

but its magnitude,|K(xi, xj)|, is not necessarily1, might achieve a poor alignment score
while it can constitute a classifier whose empirical loss is zero. Furthermore, the task of
finding a good kernel when it is not always possible to find a kernel whose sign on each
pair of instances is equal to the products of the labels (termed the soft-margin case in [5, 6])
becomes rather tricky. We thus propose a different approachwhich attempts to overcome
some of the difficulties above.

Like Cristianini et al. we assume that we are given a set of labelled instancesS =
{(xi, yi) | xi ∈ X , yi ∈ {−1, +1}, i = 1, . . . , m} . We are also given a set of unlabelled
examplesS̃ = {x̃i}m̃i=1. If such a set is not provided we can simply use the labelled in-
stances (without the labels themselves) as the setS̃. The setS̃ is used for constructing the
primitive kernels that are combined to constitute the learned kernelK̂. The labelled set is
used to form the target kernel matrix and its instances are used for evaluating the learned
kernelK̂. This approach, known as transductive learning, was suggested in [5, 6] for kernel
alignment tasks when the distribution of the instances in the test data is different from that
of the training data. This setting becomes in particular handy in datasets where the test data
was collected in a different scheme than the training data. We next discuss the notion of
kernel goodness employed in this paper. This notion builds on the objective function that
several variants of boosting algorithms maintain [7, 8]. Wetherefore first discuss in brief
the form of boosting algorithms for kernels.

2 Using Boosting to Combine Kernels

Numerous interpretations of AdaBoost and its variants castthe boosting process as a pro-
cedure that attempts to minimize, or make small, a continuous bound on the classification
error (see for instance [9, 7] and the references therein). Arecent work by Collins et al. [8]
unifies the boosting process for two popular loss functions,the exponential-loss (denoted
henceforth as ExpLoss) and logarithmic-loss (denoted as LogLoss) that bound the empir-



Input: Labelled and unlabelled sets of examples:S = {(xi, yi)}mi=1 ; S̃ = {x̃i}m̃i=1
Initialize: K ← 0 (all zeros matrix)
For t = 1, 2, . . . , T :

• Calculate distribution over pairs1 ≤ i, j ≤ m:

Dt(i, j) =

{

exp(−yiyjK(xi, xj)) ExpLoss
1/(1 + exp(−yiyjK(xi, xj))) LogLoss

• Call base-kernel-learnerwith (Dt, S, S̃) and receiveKt

• Calculate:

S+
t = {(i, j) | yiyjKt(xi, xj) > 0} ; S−

t = {(i, j) | yiyjKt(xi, xj) < 0}
W+

t =
∑

(i,j)∈S
+

t

Dt(i, j)|Kt(xi, xj)| ; W−

t =
∑

(i,j)∈S
−

t

Dt(i, j)|Kt(xi, xj)|

• Set:αt = 1
2 ln

(

W
+

t

W
−

t

)

; K ← K + αtKt.

Return: kernel operatorK : X × X → R
Figure 1: The skeleton of the boosting algorithm for kernels.

ical classification error. Given the prediction of a classifier f on an instancex and a label
y ∈ {−1, +1} the ExpLoss and the LogLoss are defined as,

ExpLoss(f(x), y) = exp(−yf(x))

LogLoss(f(x), y) = log(1 + exp(−yf(x))) .

Collins et al. described a single algorithm for the two losses above that can be used within
the boosting framework to construct a strong-hypothesis which is a classifierf(x). This
classifier is a weighted combination of (possibly very simple) base classifiers. (In the
boosting framework, the base classifiers are referred to as weak-hypotheses.) The strong-
hypothesis is of the formf(x) =

∑T

t=1 αtht(x). Collins et al. discussed a few ways to
select the weak-hypothesesht and to find a good of weightsαt. Our starting point in this
paper is the firstsequentialalgorithm from [8] that enables the construction or creation of
weak-hypotheses on-the-fly. We would like to note however that it is possible to use other
variants of boosting to design kernels.

In order to use boosting to design kernels we extend the algorithm to operate over pairs of
instances. Building on the notion of alignment from [5, 6], we say that the inner-product
of x1 andx2 is aligned with the labelsy1 andy2 if sign(K(x1, x2)) = y1y2. Furthermore,
we would like to make the magnitude ofK(x, x′) to be as large as possible. We therefore
use one of the following two alignment losses for a pair of examples(x1, y1) and(x2, y2),

ExpLoss(K(x1, x2), y1y2) = exp(−y1y2K(x1, x2))

LogLoss(K(x1, x2), y1y2) = log(1 + exp(−y1y2K(x1, x2))) .

Put another way, we view apair of instances as a single example and cast the pairs of
instances that attain the same label as positively labelledexamples while pairs of opposite
labels are cast as negatively labelled examples. Clearly, this approach can be applied to both
losses. In the boosting process we therefore maintain a distribution over pairs of instances.
The weight of each pair reflects how difficult it is to predict whether the labels of the two
instances are the same or different. The core boosting algorithm follows similar lines to
boosting algorithms for classification algorithm. The pseudo code of the booster is given in
Fig. 1. The pseudo-code is an adaptation the to problem of kernel design of the sequential-
update algorithm from [8]. As with other boosting algorithm, the base-learner, which in
our case is charge of returning a good kernel with respect to the current distribution, is
left unspecified. We therefore turn our attention to the algorithmic implementation of the
base-learning algorithm for kernels.



3 Learning Base Kernels

The base kernel learner is provided with a training setS and a distributionDt over a pairs
of instances from the training set. It is also provided with aset of unlabelled examples̃S.
Without any knowledge of the topology of the space of instances a learning algorithm is
likely to fail. Therefore, we assume the existence of aninitial inner-product over the input
space. We assume for now that this initial inner-product is the standard scalar products
over vectors inRn. We later discuss a way to relax the assumption on the form of the
inner-product. Equipped with an inner-product, we define the family of base kernels to be
the possibleouter-productsKw = wwT between a vectorw ∈ Rn and itself.

Input: A distributionDt. Labelled and unlabelled sets:
S = {(xi, yi)}mi=1 ; S̃ = {x̃i}m̃i=1 .
Compute :

• Calculate:
A ∈ Rm×m̃ , Ai,r = xi · x̃r

B ∈ Rm×m , Bi,j = Dt(i, j)yiyj

K ∈ Rm̃×m̃ , Kr,s = x̃r · x̃s

• Find the generalized eigenvectorv ∈ Rm for
the problemAT BAv = λKv which attains
the largest eigenvalueλ
• Set:w = (

∑

r vrx̃r)/‖
∑

r vrx̃r‖.
Return: Kernel operatorKw = wwt.

Figure 2: The base kernel learning algorithm.

Using this definition we get,

Kw(xi, xj) = (xi·w)(xj ·w) .

Therefore, the similarity be-
tween two instancesxi and
xj is high iff bothxi andxj

are similar (w.r.t the standard
inner-product) to a third vec-
tor w. Analogously, if both
xi andxj seem to be dissim-
ilar to the vectorw then they
are similar to each other. De-
spite the restrictive form of
the inner-products, this fam-
ily is still too rich for our set-
ting and we further impose
two restrictions on the inner
products. First, we assume
that w is restricted to a linear combination of vectors from̃S. Second, since scaling of
the base kernels is performed by the boosted, we constrain the norm ofw to be1. The
resulting class of kernels is therefore,C = {Kw = wwT | w =

∑m̃

r=1 βrx̃r, ‖w‖ = 1} .
In the boosting process we need to choose a specific base-kernel Kw from C. We therefore
need to devise a notion of how good a candidate for base kernelis given a labelled setS and
a distribution functionDt. In this work we use the simplest version suggested by Collins et
al. This version can been viewed as a linear approximation onthe loss function. We define
the score of a kernelKw w.r.t to the current distributionDt to be,

Score(Kw) =
∑

i,j

Dt(i, j)yiyjKw(xi, xj) . (1)

The higher the value of the score is, the betterKw fits the training data. Note that if
Dt(i, j) = 1/m2 (as isD0) then Score(Kw) is proportional to the alignment since‖w‖ =
1. Under mild assumptions the score can also provide a lower bound of the loss function. To
see that letc be the derivative of the loss function at margin zero,c =

∣

∣Loss′(0)
∣

∣. If all the
training examplesxi ∈ S lies in a ball of radius

√
c, we get that Loss(Kw(xi, xj), yiyj) ≥

1− cKw(xi, xj)yiyj ≥ 0, and therefore,
∑

i,j

Dt(i, j)Loss(Kw(xi, xj), yiyj) ≥ 1− c
∑

i,j

Dt(i, j)Kw(xi, xj)yiyj .

Using the explicit form ofKw in the Score function (Eq. (1)) we get, Score(Kw) =
∑

i,j D(i, j)yiyj(w·xi)(w·xj) . Further developing the above equation using the constraint

thatw =
∑m̃

r=1 βrx̃r we get,

Score(Kw) =
∑

r,s

βsβr

∑

i,j

D(i, j)yiyj (xi · x̃r) (xj · x̃s) .



To compute efficiently the base kernel scorewithout an explicit enumeration we exploit
the fact that if the initial distributionD0 is symmetric (D0(i, j) = D0(j, i)) then all the
distributions generated along the run of the boosting process,Dt, are also symmetric. We
now define a matrixA ∈ Rm×m̃ whereAi,r = xi · x̃r and a symmetric matrixB ∈ Rm×m

with Bi,j = Dt(i, j)yiyj . Simple algebraic manipulations yield that the score function
can be written as the following quadratic form, Score(β) = βT (AT BA)β , whereβ is
m̃ dimensional column vector. Note that sinceB is symmetric so isAT BA. Finding a
good base kernel is equivalent to finding a vectorβ which maximizesthis quadratic form
under the norm equality constraint‖w‖2 = ‖∑m̃

r=1 βrx̃r‖2 = βT Kβ = 1 where Kr,s =
x̃r · x̃s . Finding the maximum of Score(β) subject to the norm constraint is a well known
maximization problem known as the generalized eigen vectorproblem (cf. [10]). Applying
simple algebraic manipulations it is easy to show that the matrix AT BA is positive semi-
definite. Assuming that the matrixK is invertible, the the vectorβ which maximizes the
quadratic form is proportional the eigenvector ofK−1AT BA which is associated with the
generalized largest eigenvalue. Denoting this vector byv we get thatw ∝ ∑m̃

r=1 vrx̃r.
Adding the norm constraint we get thatw = (

∑m̃

r=1 vrx̃r)/‖
∑m̃

r=1 vrx̃r‖. The skeleton
of the algorithm for finding a base kernels is given in Fig. 3. To conclude the description of
the kernel learning algorithm we describe how to the extend the algorithm to be employed
with general kernel functions.

Kernelizing the Kernel: As described above, we assumed that the standard scalar-
product constitutes the template for the class of base-kernelsC. However, since the proce-
dure for choosing a base kernel depends onS andS̃ only through the inner-products matrix
A, we can replace the scalar-product itself with a general kernel operatorκ : X ×X → R,
whereκ(xi, xj) = φ(xi) · φ(xj). Using a general kernel functionκ we can not com-
pute however the vectorw explicitly. We therefore need to show that the norm ofw, and
evaluationKw on any two examples can still be performed efficiently.

First note that given the vectorv we can compute the norm ofw as follows,

‖w‖2 =

(

∑

r

vrx̃r

)T (
∑

s

vsx̃r

)

=
∑

r,s

vrvsκ(x̃r, x̃s) .

Next, given two vectorsxi andxj the value of their inner-product is,

Kw(xi, xj) =
∑

r,s

vrvsκ(xi, x̃r)κ(xj , x̃s) .

Therefore, although we cannot compute the vectorw explicitly we can still compute its
norm and evaluate any of the kernels from the classC.

4 Experiments

Synthetic data: We generated binary-labelled data using as input space the vectors inR100. The labels, in{−1, +1}, were picked uniformly at random. Lety designate the label
of a particular example. Then, the first two components of each instance were drawn from
a two-dimensional normal distribution,N (µ, ∆

∑

∆−1) with the following parameters,

µ = y

(

0.03
0.03

)

∆ =
1√
2

(

1 −1
1 1

)

∑

=

(

0.1 0
0 0.01

)

.

That is, the label of each examples determined the mean of thedistribution from which
the first two components were generated. The rest of the components in the vector (98



−0.2 0 0.2

−0.2

0

0.2

−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

300
20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

300

Figure 3: Results on a toy data set prior to learning a kernel (first and third from left)
and after learning (second and fourth). For each of the two settings we show the first two
components of the training data (left) and the matrix of inner products between the train
and the test data (right).

altogether) were generated independently using the normaldistribution with a zero mean
and a standard deviation of0.05. We generated100 training and test sets of size300 and
200 respectively. We used the standard dot-product as the initial kernel operator.

On each experiment we first learned a linear classier that separates the classes using the
Perceptron [11] algorithm. We ran the algorithm for10 epochs on the training set. After
each epoch we evaluated the performance of the current classifier on the test set. We then
used the boosting algorithm for kernels with the LogLoss for30 rounds to build a kernel
for each random training set. After learning the kernel we re-trained a classifier with the
Perceptron algorithm and recorded the results. A summary ofthe online performance is
given in Fig. 4. The plot on the left-hand-side of the figure shows the instantaneous error
(achieved during the run of the algorithm). Clearly, the Perceptron algorithm with the
learned kernel converges much faster than the original kernel. The middle plot shows the
test error after each epoch. The plot on the right shows the test error on a noisy test set
in which we added a Gaussian noise of zero mean and a standard deviation of0.03 to
the first two features. In all plots, each bar indicates a95% confidence level. It is clear
from the figure that the original kernel is much slower to converge than the learned kernel.
Furthermore, though the kernel learning algorithm was not expoed to the test set noise, the
learned kernel reflects better the structure of the feature space which makes the learned
kernel more robust to noise.

Fig. 3 further illustrates the benefits of using a boutique kernel. The first and third plots
from the left correspond to results obtained using the original kernel and the second and
fourth plots show results using the learned kernel. The leftplots show the empirical distri-
bution of the two informative components on the test data. For the learned kernel we took
each input vector and projected it onto the two eigenvectorsof the learned kernel opera-
tor matrix that correspond to the two largest eigenvalues. Note that the distribution after
the projection is bimodal and well separated along the first eigen direction (x-axis) and
shows rather little deviation along the second eigen direction (y-axis). This indicates that
the kernel learning algorithm indeed found the most informative projection for separating
the labelled data with large margin. It is worth noting that,in this particular setting, any
algorithm which chooses a single feature at a time is prone tofailure since both the first
and second features are mandatory for correctly classifying the data.

The two plots on the right hand side of Fig. 3 use a gray level color-map to designate the
value of the inner-product between each pairs instances, one from training set (y-axis) and
the other from the test set. The examples were ordered such that the first group consists
of the positively labelled instances while the second groupconsists of the negatively la-
belled instances. Since most of the features are non-relevant the original inner-products
are noisy and do not exhibit any structure. In contrast, the inner-products using the learned
kernel yields in a2 × 2 block matrix indicating that the inner-products between instances
sharing the same label obtain large positive values. Similarly, for instances of opposite



10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Round

A
ve

ra
ge

d 
C

um
ul

at
iv

e 
E

rr
or

 %

Regular Kernel
Learned Kernel

2 4 6 8 10
0

2

4

6

8

10

12

Epochs

T
es

t E
rr

or
 %

Regular Kernel
Learned Kernel

2 4 6 8 10
9

10

11

12

13

14

15

16

17

18

19

Epochs

T
es

t E
rr

or
 %

Regular Kernel
Learned Kernel

Figure 4: The online training error (left), test error (middle) on clean synthetic data using
a standard kernel and a learned kernel. Right: the online test error for the two kernels on a
noisy test set.

labels the inner products are large and negative. The form ofthe inner-products matrix of
the learned kernel indicates that the learning problem itself becomes much easier. Indeed,
the Perceptron algorithm with the standard kernel requiredaround94 training examples
on the average before converging to a hyperplane which perfectly separates the training
data while using the Perceptron algorithm with learned kernel required asingleexample to
reach a perfect separation on all100 random training sets.

USPS dataset: The USPS (US Postal Service) dataset is known as a challenging clas-
sification problem in which the training set and the test set were collected in a different
manner. The USPS contains7, 291 training examples and2, 007 test examples. Each ex-
ample is represented as a16× 16 matrix where each entry in the matrix is a pixel that can
take values in{0, . . . , 255}. Each example is associated with a label in{0, . . . , 9} which
is the digit content of the image. Since the kernel learning algorithm is designed for binary
problems, we broke the10-class problem into45 binary problems by comparing all pairs
of classes. The interesting question of how to learn kernelsfor multiclass problems is be-
yond the scopre of this short paper. We thus constraint on thebinary error results for the45
binary problem described above. For the original kernel we chose a RBF kernel withσ = 1
which is the value employed in the experiments reported in [12]. We used the kernelized
version of the kernel design algorithm to learn a different kernel operator for each of the
binary problems. We then used a variant of the Perceptron [11] and with the original RBF
kernel and with the learned kernels. One of the motivations for using the Perceptron is its
simplicity which can underscore differences in the kernels. We ran the kernel learning al-
gorithm with LogLoss and ExpLoss, using bith the training set and the test test as̃S. Thus,
we obtained four different sets of kernels where each set consists of45 kernels. By exam-
ining the training loss, we set the number of rounds of boosting to be30 for the LogLoss
and50 for the ExpLoss, when using the trainin set. When using the test set, the number
of rounds of boosting was set to100 for both losses. Since the algorithm exhibits slower
rate of convergence with the test data, we choose a a higher value without attempting to
optimize the actual value. The left plot of Fig. 5 is a scatterplot comparing the test error of
each of the binary classifiers when trained with the originalRBF a kernel versus the perfor-
mance achieved on the same binary problem with a learned kernel. The kernels were built
using boosting with the LogLoss and̃S was the training data. In almost all of the45 binary
classification problems, the learned kernels yielded lowererror rates when combined with
the Perceptron algorithm. The right plot of Fig. 5 compares two learned kernels: the first
was build using the training instances as the templates constituing S̃ while the second used
the test instances. Although the differenece between the two versions is not as significant
as the difference on the left plot, we still achieve an overall improvement in about25% of
the binary problems by using the test instances.



0 1 2 3 4 5 6
0

1

2

3

4

5

6

Base Kernel
Le

ar
ne

d 
K

er
ne

l (
T

ra
in

)
0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Learned Kernel (Train)

Le
ar

ne
d 

K
er

ne
l (

T
es

t)

Figure 5: Left: a scatter plot comparing the error rate of45 binary classifiers trained using
an RBF kernel (x-axis) and a learned kernel with training instances. Right:a similar scatter
plot for a learned kernel only constructed from training instances (x-axis) and test instances.

5 Discussion

In this paper we showed how to use the boosting framework to design kernels. Our ap-
proach is especially appealing in transductive learning tasks where the test data distribution
is different than the the distribution of the training data.For example, in speech recogni-
tion tasks the training data is often clean and well recordedwhile the test data often passes
through a noisy channel that distorts the signal. An interesting and challanging question
that stem from this research is how to extend the framework toaccommodate more com-
plex decision tasks such as multiclass and regression problems. Finally, we would like to
note alternative approaches to the kernel design problem has been devised in parallel and
independently. See [13, 14] for further details.

Acknowledgements: Special thanks to Cyril Goutte and to John Show-Taylor for pointing
the connection to the generalized eigen vector problem. Thanks also to the anonymous
reviewers for constructive comments.

References
[1] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[2] N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines. Cambridge

University Press, 2000.
[3] Huma Lodhi, John Shawe-Taylor, Nello Cristianini, and Christopher J. C. H. Watkins. Text

classification using string kernels.Journal of Machine Learning Research, 2:419–444, 2002.
[4] C. Leslie, E. Eskin, and W. Stafford Noble. The spectrum kernel: A string kernel for svm

protein classification. InProceedings of the Pacific Symposium on Biocomputing, 2002.
[5] Nello Cristianini, Andre Elisseeff, John Shawe-Taylor, and Jaz Kandla. On kernel target align-

ment. InAdvances in Neural Information Processing Systems 14, 2001.
[6] G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui,and M. Jordan. Learning the kernel matrix

with semi-definite programming. InProc. of the 19th Intl. Conf. on Machine Learning, 2002.
[7] Jerome Friedman, Trevor Hastie, and Robert Tibshirani.Additive logistic regression: a statisti-

cal view of boosting.Annals of Statistics, 28(2):337–374, April 2000.
[8] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, adaboost and

bregman distances.Machine Learning, 47(2/3):253–285, 2002.
[9] Llew Mason, Jonathan Baxter, Peter Bartlett, and MarcusFrean. Functional gradient techniques

for combining hypotheses. InAdvances in Large Margin Classifiers. MIT Press, 1999.
[10] Roger A. Horn and Charles R. Johnson.Matrix Analysis. Cambridge University Press, 1985.
[11] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization

in the brain.Psychological Review, 65:386–407, 1958.
[12] B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K. M¨uller, G. Rätsch, and A.J. Smola. Input

space vs. feature space in kernel-based methods.IEEE Trans. on NN, 10(5):1000–1017, 1999.
[13] O. Bosquet and D.J.L. Herrmann. On the complexity of learning the kernel matrix. NIPS, 2002.
[14] C.S. Ong, A.J. Smola, and R.C. Williamson. Superkenels. NIPS, 2002.


