Kernel Design using Boosting

Koby Crammer Joseph Keshet Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{kobi cs, j keshet, si nger }@s. huji.ac.il

Abstract

The focus of the paper is the problem of learning kernel dpesdrom

empirical data. We cast the kernel design problem as themrmtion of

an accurate kernel from simple (and less accurate) baselkelive use
the boosting paradigm to perform the kernel constructiat@ss. To do
so, we modify the booster so as to accommodate kernel opgrafée

also devise an efficient weak-learner for simple kernelsithbased on
generalized eigen vector decomposition. We demonstratefthctive-
ness of our approach on synthetic data and on the USPS ddfastie

USPS dataset, the performance of the Perceptron algorittimearned
kernels is systematically better than a fixed RBF kernel.

1 Introduction and problem Setting

The last decade brought voluminous amount of work on thegdesinalysis and experi-
mentation of kernel machines. Algorithm based on kernefsbmused for various ma-
chine learning tasks such as classification, regressiokjimg, and principle component
analysis. The most prominent learning algorithm that eygple@rnels is the Support Vec-
tor Machines (SVM) [1, 2] designed for classification andresgion. A key component
in a kernel machine is kernel operatowhich computes for any pair of instances their
inner-product in some abstract vector space. Intuitively mformally, a kernel operator
is a means for measuring similarity between instances. atrat of the work that em-
ployed kernel operators concentrated on various macharaileg problems that involved
a predefineckernel. A typical approach when using kernels is to chooserael before
learning starts. Examples to popular predefined kerneltharBadial Basis Functions and
the polynomial kernels (see for instance [1]). Despite thgpBcity required in modifying
a learning algorithm to a “kernelized” version, the sucagfssuch algorithms is not well
understood yet. More recently, special efforts have beewntdd to crafting kernels for
specific tasks such as text categorization [3] and proteissdication problems [4].

Our work attempts to give a computational alternative tadpfimed kernels by learning
kernel operators from data. We start with a few definitionst X be an instance space.
A kernel is an inner-product operatéf : X x X — R. An explicit way to describe{

is via a mapping : X — H from X’ to an inner-products spa@¢ such thatk'(z,2’) =
¢(z)-¢(z"). Given a kernel operator and a finite set of instarttes {«;, y; } ,, the kernel
matrix (a.k.a the Gram matrix) is the matrix of all possiliiaér-products of pairs frorf,
K; ; = K(z;,x;). We therefore refer to the general formMfas the kernebperatorand
to the application of the kernel operator to a set of pairsisfances as the kernahtrix.

The specific setting of kernel design we consider assumdswhahave access to a
base kernel learneeand we are given #arget kernel K* manifested as a kernel ma-
trix on a set of examples. Upon calling the base kernel lgatrmeturns a kernel op-
erator denote/{;. The goal thereafter is to find a weighted combination of &&rn

K(z,2') = > Kj(z,2') that is similar, in a sense that will be defined shortly, to
the target kernelk ~ K*. Cristianini et al. [5] in their pioneering work on kernetget
alignment employed as the notion of similarity the innes¢hrct between the kernel ma-
trices< K, K' >p = 371" _) K(x;, ;) K'(2;,z;). Given this definition, they defined the
kernel-similarity, or alignment, to be the above inner¢arct normalized by the norm of
each kernelA(S, K, K*) = (< K, K* >F) /\/< K,K >p< K*,K* >, , whereS

is, as above, a finite sample of instances. Put another way, the kernel alignment Cris-
tianini et al. employed is the cosine of the angle betweerkéneel matrices where each
matrix is “flattened” into a vector of dimension?. Therefore, this definition implies that
the alignment is bounded above bynd can attain this value iff the two kernel matrices
are identical. Given a (column) vector of labelsy wherey; € {—1,+1} is the label

of the instancex;, Cristianini et al. used the outer-productgpfis the the target kernel,
K* = yyT. Therefore, an optimal alignment is achieve(fﬂf:ci,xj) = y;y;. Clearly,

if such a kernel is used for classifying instances fraimthen the kernel itself suffices to
construct an excellent classifigr: X — {—1,+1} by setting,f(z) = sign(y; K (z;, z))
where(z;, y;) is any instance-label pair. Cristianini et al. then deviagarocedure that
works with both labelled and unlabelled examples to fir@ram matrixwhich attains a
good alignment withik* on the labelled part of the matrix. While this approach caady
construct powerful kernels, a few problems arise from th&onoof kernel alignment they
employed. For instance, a kernel operator such thagihe K (z;, z;)) is equal toy;y;

but its magnitude|K (z;, z;)|, is not necessarily, might achieve a poor alignment score
while it can constitute a classifier whose empirical lossei®z Furthermore, the task of
finding a good kernel when it is not always possible to find an&kewhose sign on each
pair of instances is equal to the products of the labels g@drine soft-margin case in [5, 6])
becomes rather tricky. We thus propose a different appreduith attempts to overcome
some of the difficulties above.

Like Cristianini et al. we assume that we are given a set oéllall instancesS =
{(ziyyi) | s € X, y; € {—1,+1}, i =1,...,m} . We are also given a set of unlabelled
examplesS = {z;}.",. If such a set is not provided we can simply use the labelled in
stances (without the labels themselves) as thé&'s&he setS is used for constructing the
primitive kernels that are combined to constitute the ledrkernelis. The labelled set is
used to form the target kernel matrix and its instances ard ter evaluating the learned
kernelK . This approach, known as transductive learning, was steg@s[5, 6] for kernel
alignment tasks when the distribution of the instancesértdist data is different from that
of the training data. This setting becomes in particuladyan datasets where the test data
was collected in a different scheme than the training data.n@xt discuss the notion of
kernel goodness employed in this paper. This notion buildghe objective function that
several variants of boosting algorithms maintain [7, 8]. Werefore first discuss in brief
the form of boosting algorithms for kernels.

2 Using Boosting to Combine Kernels

Numerous interpretations of AdaBoost and its variants ttesboosting process as a pro-
cedure that attempts to minimize, or make small, a contialomund on the classification
error (see for instance [9, 7] and the references thereingcAnt work by Collins et al. [8]
unifies the boosting process for two popular loss functitims exponential-loss (denoted
henceforth as ExpLoss) and logarithmic-loss (denoted gt &ss) that bound the empir-

Input: Labelled and unlabelled sets of examples= {(z;,v:)}7, ; S = {&:}7,
Initialize: K «— 0 (all zeros matrix)
Fort=1,2,...,T:

e Calculate distribution over paiis< i, j < m:

Dy(i, j) = exp(—yiy; K (xi,x;)) ExpLoss
’ 1/(1 + exp(—yiy; K (zi,2;))) LogLoss
e Callbase- ker nel -1 ear ner with (Dy, S, S) and receivel;
e Calculate:
S ={(,5)] yiy; Ki(i, ;) > 0} s Sy =10, 0) lyiy; Ke(wi, 25) < 0}
Wt+ = Z(i,j)gsj Dy (i, K (i, z5)| 5 Wy = Z(i,j)gs; Dy (i,)| Kt (s, z;)|
e Set:qy; = %111 (g—{) 7 K — K+ oK.

Return: kernel operatoKt: XxX—R

Figure 1: The skeleton of the boosting algorithm for kernels

ical classification error. Given the prediction of a classifi on an instance: and a label
y € {—1,+1} the ExpLoss and the LogLoss are defined as,

ExpLos¢f(z),y) = exp(—yf(z))

LoglLosgf(z),y) = log(1+exp(—yf(x))) -
Collins et al. described a single algorithm for the two I@sakove that can be used within
the boosting framework to construct a strong-hypothesishwis a classifierf (x). This
classifier is a weighted combination of (possibly very sig)pbase classifiers. (In the
boosting framework, the base classifiers are referred toeakuypotheses.) The strong-
hypothesis is of the fornf(z) = Zthl athi(z). Collins et al. discussed a few ways to
select the weak-hypothesksand to find a good of weights;. Our starting point in this
paper is the firssequentiablgorithm from [8] that enables the construction or creatd
weak-hypotheses on-the-fly. We would like to note howevat ithis possible to use other
variants of boosting to design kernels.

In order to use boosting to design kernels we extend theittigoto operate over pairs of
instances. Building on the notion of alignment from [5, 6k say that the inner-product
of 1 andx is aligned with the labelg, andys if sign(K (21, x2)) = y1y2. Furthermore,
we would like to make the magnitude &f(z, ') to be as large as possible. We therefore
use one of the following two alignment losses for a pair ofregkes(x1, y1) and(z2, y2),

EXpLOS$K (z1,22),y1y2) = exp(—y1y2K(z1,72))

LogLosS K (z1,22),y1y2) = log(1l + exp(—y1y2K (21, 72))) -
Put another way, we view pair of instances as a single example and cast the pairs of
instances that attain the same label as positively labeltadples while pairs of opposite
labels are cast as negatively labelled examples. Clehityapproach can be applied to both
losses. In the boosting process we therefore maintain dbdisbn over pairs of instances.
The weight of each pair reflects how difficult it is to predidiether the labels of the two
instances are the same or different. The core boostingitiigofollows similar lines to
boosting algorithms for classification algorithm. The pb®aode of the booster is given in
Fig. 1. The pseudo-code is an adaptation the to problem agkdesign of the sequential-
update algorithm from [8]. As with other boosting algoriththe base-learner, which in
our case is charge of returning a good kernel with respedta@cctirrent distribution, is
left unspecified. We therefore turn our attention to the atgmic implementation of the
base-learning algorithm for kernels.

3 Learning Base Kernels

The base kernel learner is provided with a training$eand a distributionD, over a pairs
of instances from the training set. It is also provided wittetof unlabelled examples
Without any knowledge of the topology of the space of instésna learning algorithm is
likely to fail. Therefore, we assume the existence ofratial inner-product over the input
space. We assume for now that this initial inner-produché standard scalar products
over vectors inR™. We later discuss a way to relax the assumption on the formef t
inner-product. Equipped with an inner-product, we defireefimily of base kernels to be
the possibleuter-productsk,, = ww’ between a vectar € R™ and itself.

Using this definition we get,
Ky(xi,25) = (zw)(xjw) .
Therefore, the similarity be-
tween two instances; and
x; is high iff bothz; andz;
are similar (w.r.t the standard
inner-product) to a third vec-
tor w. Analogously, if both

Input: A distributionpt. Labelled and unlabelled sets:
S={(zi,y) ity S={T}2, .
Compute:
e Calculate:
A e R™*™ , Aiﬂm =x; Tr
KeR™™ K,s=2%, T

x; andz; seem to be dissim-
ilar to the vectorw then they

are similar to each other. De-
spite the restrictive form of

e Find the generalized eigenvectore R™ for
the problemA” BAv = AKwv which attains
the largest eigenvalue

o Settw = (>, v.Zp) /|| D, vrZr].

Return: Kernel operatoi(,, = ww®.

the inner-products, this fam-
ily is still too rich for our set-
ting and we further impose
two restrictions on the inner
products. First, we assume
thatw is restricted to a linear combination of vectors fréin Second, since scaling of
the base kernels is performed by the boosted, we constr@indtm ofw to bel. The
resulting class of kernels is therefote= {K,, = ww” |w = Y"", B,&;, |Jw| = 1} .

In the boosting process we need to choose a specific basetképrfrom C. We therefore
need to devise a notion of how good a candidate for base kisrgigken a labelled sef and

a distribution functionD;,. In this work we use the simplest version suggested by Goditn
al. This version can been viewed as a linear approximatigh@foss function. We define
the score of a kerndl,, w.r.t to the current distributio®, to be,

ScordKy,) = > Dy(i,)iy Kuw(@i, ;) -
i

Figure 2: The base kernel learning algorithm.

(1)

The higher the value of the score is, the betkgy fits the training data. Note that if
Dy(i,7) = 1/m? (as isDy) then ScoréK) is proportional to the alignment singev|| =
1. Under mild assumptions the score can also provide a lowandbof the loss function. To
see that let be the derivative of the loss function at margin zere; \Losé(o)‘. If all the
training examples; € S lies in a ball of radius/c, we get that Losg<,, (s,), yiy;) >

1 — cKy(zi, x5)y:y; > 0, and therefore,

> Di(i, j)Losg Ko (i, 7;), yiy;) = 1 — ¢ Y Dyli,) K (i, 25)yiy; -
.5]
Using the explicit form ofK,, in the Score function (Eqg. (1)) we get, Scokg,) =
Zi_’j D(i, j)y:y;(w-z;) (w-z;) . Further developing the above equation using the constraint

thatw = Zf;l G-, We get,
ScoréK,) = 3 BuBy S DU, j)ysy; (@i - &) (x; - &) -
7,8 1,7

To compute efficiently the base kernel scavithoutan explicit enumeration we exploit
the fact that if the initial distributioD, is symmetric Dy (4, j) = Dy(4,4)) then all the
distributions generated along the run of the boosting m®de,, are also symmetric. We
now define a matrid € R™*" whereA; , = z; - &, and a symmetric matri® € R™*™
with B; ; = D,(i,j)y;y;. Simple algebraic manipulations yield that the score fianct
can be written as the following quadratic form, Sdpre = 37 (AT BA)S , whereg is
7 dimensional column vector. Note that sinBeis symmetric so isA” BA. Finding a
good base kernel is equivalent to finding a ve@arhich maximizeghis quadratic form
under the norm equality constraifw|* = |7, 3,%,|2 = BTK3 = 1 where K, , =
Z, - Zs . Finding the maximum of Sco(g) subject to the norm constraint is a well known
maximization problem known as the generalized eigen vextaslem (cf. [10]). Applying
simple algebraic manipulations it is easy to show that theima” BA is positive semi-
definite. Assuming that the matrik is invertible, the the vectgs which maximizes the
quadratic form is proportional the eigenvectotf6f ' A” B A which is associated with the
generalized largest eigenvalue. Denoting this vector bye get thatw o« > | v, Z;.

Adding the norm constraint we get that= (3", , v,Z,)/|| >, v,Z,||. The skeleton
of the algorithm for finding a base kernels is given in Fig. 8. conclude the description of
the kernel learning algorithm we describe how to the extbedtgorithm to be employed
with general kernel functions.

Kernelizing the Kernel: As described above, we assumed that the standard scalar-
product constitutes the template for the class of baseeksfn However, since the proce-

dure for choosing a base kernel depend§'@mdS only through the inner-products matrix
A, we can replace the scalar-product itself with a generald@perator : X' x X — R,
wherek(z;, z;) = ¢(z;) - ¢(z;). Using a general kernel function we can not com-
pute however the vectar explicitly. We therefore need to show that the normugfand
evaluationk,, on any two examples can still be performed efficiently.

First note that given the vectorwe can compute the norm af as follows,

T
H’LU||2 = <Z 'Urjr> <Z vsir> = Zv’rvs“(jr,is) .

T s 7,8
Next, given two vectors; andx; the value of their inner-productis,

Ky(zi,z;) = vasﬁ(wi,@)ﬁ(wj,@s).
T8

Therefore, although we cannot compute the veetaxplicitly we can still compute its
norm and evaluate any of the kernels from the class

4 Experiments

Synthetic data: We generated binary-labelled data using as input spaceettierg in
R'%. The labels, i —1, +1}, were picked uniformly at random. Lgtdesignate the label
of a particular example. Then, the first two components ofiéastance were drawn from
a two-dimensional normal distribution/ (1, A > A~1) with the following parameters,

0.03 1 1 -1 0.1 0
“—y(o.os) A—ﬁ(1 1) Z—<o 0.01)'
That is, the label of each examples determined the mean dfigtgbution from which
the first two components were generated. The rest of the coemp® in the vectorogg

Figure 3: Results on a toy data set prior to learning a keffirst @nd third from left)
and after learning (second and fourth). For each of the twtongs we show the first two
components of the training data (left) and the matrix of mpm@ducts between the train
and the test data (right).

altogether) were generated independently using the natisi@ibution with a zero mean
and a standard deviation 6f05. We generated00 training and test sets of siz®0 and
200 respectively. We used the standard dot-product as thalikérnel operator.

On each experiment we first learned a linear classier tharatgs the classes using the
Perceptron [11] algorithm. We ran the algorithm idrepochs on the training set. After
each epoch we evaluated the performance of the currentfidass the test set. We then
used the boosting algorithm for kernels with the LogLoss3forounds to build a kernel
for each random training set. After learning the kernel wéraeed a classifier with the
Perceptron algorithm and recorded the results. A summatleobnline performance is
given in Fig. 4. The plot on the left-hand-side of the figurewh the instantaneous error
(achieved during the run of the algorithm). Clearly, thed@ptron algorithm with the
learned kernel converges much faster than the originalekefirhe middle plot shows the
test error after each epoch. The plot on the right shows #teeteor on a noisy test set
in which we added a Gaussian noise of zero mean and a stanelaetioh of 0.03 to
the first two features. In all plots, each bar indicate¥% confidence level. It is clear
from the figure that the original kernel is much slower to cenge than the learned kernel.
Furthermore, though the kernel learning algorithm was rpbed to the test set noise, the
learned kernel reflects better the structure of the featpaees which makes the learned
kernel more robust to noise.

Fig. 3 further illustrates the benefits of using a boutiquankke The first and third plots
from the left correspond to results obtained using the palgkernel and the second and
fourth plots show results using the learned kernel. Theplets show the empirical distri-
bution of the two informative components on the test data.tif®learned kernel we took
each input vector and projected it onto the two eigenveabtke learned kernel opera-
tor matrix that correspond to the two largest eigenvaluestethat the distribution after
the projection is bimodal and well separated along the figgredirection ¢-axis) and
shows rather little deviation along the second eigen doed-axis). This indicates that
the kernel learning algorithm indeed found the most infdivegprojection for separating
the labelled data with large margin. It is worth noting thatthis particular setting, any
algorithm which chooses a single feature at a time is prorfailare since both the first
and second features are mandatory for correctly clasgityia data.

The two plots on the right hand side of Fig. 3 use a gray levieremap to designate the
value of the inner-product between each pairs instancesfrom training sety-axis) and
the other from the test set. The examples were ordered satlhi first group consists
of the positively labelled instances while the second groapsists of the negatively la-
belled instances. Since most of the features are non-rel#va original inner-products
are noisy and do not exhibit any structure. In contrast,heii-products using the learned
kernel yields in & x 2 block matrix indicating that the inner-products betweestances
sharing the same label obtain large positive values. Silpilor instances of opposite

O Regular Kernel
0.9 O Learned Kernel

Test Error %
ey

Figure 4: The online training error (left), test error (migldon clean synthetic data using
a standard kernel and a learned kernel. Right: the onlinetss for the two kernels on a
noisy test set.

labels the inner products are large and negative. The fortimeoihnner-products matrix of
the learned kernel indicates that the learning problenf ieomes much easier. Indeed,
the Perceptron algorithm with the standard kernel requar@dind94 training examples
on the average before converging to a hyperplane which gérfeeparates the training
data while using the Perceptron algorithm with learned éamquired asingleexample to
reach a perfect separation on HID random training sets.

USPS dataset: The USPS (US Postal Service) dataset is known as a chalpotis-
sification problem in which the training set and the test setencollected in a different
manner. The USPS contaifis291 training examples ang, 007 test examples. Each ex-
ample is represented ad & x 16 matrix where each entry in the matrix is a pixel that can
take values i0,...,255}. Each example is associated with a labe{. .., 9} which

is the digit content of the image. Since the kernel learniggrithm is designed for binary
problems, we broke th&0-class problem intd5 binary problems by comparing all pairs
of classes. The interesting question of how to learn kerfoglmulticlass problems is be-
yond the scopre of this short paper. We thus constraint ohittay error results for thé5
binary problem described above. For the original kernelagse a RBF kernel with = 1
which is the value employed in the experiments reported 2j. [WWe used the kernelized
version of the kernel design algorithm to learn a differesrtniel operator for each of the
binary problems. We then used a variant of the Perceptrdrefid with the original RBF
kernel and with the learned kernels. One of the motivationsi§ing the Perceptron is its
simplicity which can underscore differences in the kern@e ran the kernel learning al-
gorithm with LogLoss and ExpLoss, using bith the trainingas®l the test test & Thus,
we obtained four different sets of kernels where each sefistsnof45 kernels. By exam-
ining the training loss, we set the number of rounds of bagsib be30 for the LogLoss
and50 for the ExpLoss, when using the trainin set. When using teedet, the number
of rounds of boosting was set 100 for both losses. Since the algorithm exhibits slower
rate of convergence with the test data, we choose a a higher wathout attempting to
optimize the actual value. The left plot of Fig. 5 is a scatlet comparing the test error of
each of the binary classifiers when trained with the origRhBF a kernel versus the perfor-
mance achieved on the same binary problem with a learne@lkdrne kernels were built
using boosting with the LogLoss astwas the training data. In almost all of th& binary
classification problems, the learned kernels yielded l@vesr rates when combined with
the Perceptron algorithm. The right plot of Fig. 5 compaves learned kernels: the first
was build using the training instances as the templategioging S while the second used
the test instances. Although the differenece between thevéssions is not as significant
as the difference on the left plot, we still achieve an ovéngbrovement in abou?5% of
the binary problems by using the test instances.

@ >
»
o

Iy
N
o

Learned Kernel (Train)
©
Learned Kernel (Test)
~

~

A
:

3 2 3 4 5
Base Kernel Learned Kernel (Train)

Figure 5: Left: a scatter plot comparing the error ratd®binary classifiers trained using
an RBF kernel{-axis) and a learned kernel with training instances. Riglsimilar scatter
plot for a learned kernel only constructed from trainingamees ¢-axis) and test instances.

5 Discussion

In this paper we showed how to use the boosting framework sigdekernels. Our ap-
proach is especially appealing in transductive learnisggavhere the test data distribution
is different than the the distribution of the training dakar example, in speech recogni-
tion tasks the training data is often clean and well recordeite the test data often passes
through a noisy channel that distorts the signal. An intargsand challanging question
that stem from this research is how to extend the framewodctmmmodate more com-
plex decision tasks such as multiclass and regressiongamshlFinally, we would like to
note alternative approaches to the kernel design problenbéan devised in parallel and
independently. See [13, 14] for further details.

Acknowledgements: Special thanks to Cyril Goutte and to John Show-Taylor faniog
the connection to the generalized eigen vector problem.nR$also to the anonymous
reviewers for constructive comments.

References

[1] V. N. Vapnik. Statistical Learning TheoryWiley, 1998.
[2] N. Cristianini and J. Shawe-TayloAn Introduction to Support Vector Machine€ambridge
University Press, 2000.
[3] Huma Lodhi, John Shawe-Taylor, Nello Cristianini, antiriStopher J. C. H. Watkins. Text
classification using string kerneldournal of Machine Learning Researci419-444, 2002.
[4] C. Leslie, E. Eskin, and W. Stafford Noble. The spectruenriel: A string kernel for svm
protein classification. IProceedings of the Pacific Symposium on Biocompufifg2.
[5] Nello Cristianini, Andre Elisseeff, John Shawe-Tayland Jaz Kandla. On kernel target align-
ment. InAdvances in Neural Information Processing System20a@1.
[6] G.Lanckriet, N. Cristianini, P. Bartlett, L. EIl Ghaowaind M. Jordan. Learning the kernel matrix
with semi-definite programming. IRroc. of the 19th Intl. Conf. on Machine Learnir002.
[7] Jerome Friedman, Trevor Hastie, and Robert TibshirAdditive logistic regression: a statisti-
cal view of boosting Annals of Statistic28(2):337-374, April 2000.
[8] Michael Collins, Robert E. Schapire, and Yoram Singerogistic regression, adaboost and
bregman distanced4achine Learning47(2/3):253-285, 2002.
[9] Llew Mason, Jonathan Baxter, Peter Bartlett, and MaFmesn. Functional gradient techniques
for combining hypotheses. isdvances in Large Margin ClassifieslIT Press, 1999.
[10] Roger A. Horn and Charles R. Johnsd#atrix Analysis Cambridge University Press, 1985.
[11] F. Rosenblatt. The perceptron: A probabilistic modelihformation storage and organization
in the brain.Psychological Reviey5:386—407, 1958.
[12] B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch, Kuld¥, G. Ratsch, and A.J. Smola. Input
space vs. feature space in kernel-based metH&@E Trans. on NIN10(5):1000-1017, 1999.
[13] O.Bosquet and D.J.L. Herrmann. On the complexity ofiegy the kernel matrix. NIPS, 2002.
[14] C.S.Ong, A.J. Smola, and R.C. Williamson. Superkensl®S, 2002.

