
A GPU-Tailored Approach for Training Kernelized SVMs

Andrew Cotter
Toyota Technological Institute

at Chicago
6045 S. Kenwood Ave.
Chicago, Illinois 60637

cotter@ttic.edu

Nathan Srebro
Toyota Technological Institute

at Chicago
6045 S. Kenwood Ave.
Chicago, Illinois 60637

nati@ttic.edu

Joseph Keshet
Toyota Technological Institute

at Chicago
6045 S. Kenwood Ave.
Chicago, Illinois 60637

jkeshet@ttic.edu

ABSTRACT

We present a method for efficiently training binary and multiclass
kernelized SVMs on a Graphics Processing Unit (GPU). Our meth-
ods apply to a broad range of kernels, including the popular Gaus-
sian kernel, on datasets as large as the amount of available mem-
ory on the graphics card. Our approach is distinguished from ear-
lier work in that it cleanly and efficiently handles sparse datasets
through the use of a novel clustering technique. Our optimiza-
tion algorithm is also specifically designed to take advantage of
the graphics hardware. This leads to different algorithmic choices
then those preferred in serial implementations. Our easy-to-use li-
brary is orders of magnitude faster then existing CPU libraries, and
several times faster than prior GPU approaches.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming

General Terms

Design, Experimentation, Performance

1. INTRODUCTION
Support Vector Machines (SVMs) are among the most popular

general purpose learning methods in use today. SVM learning
amounts to learning a linear predictor, with regularization (corre-
sponding to a “large margin”) ensuring good generalization even in
very high dimensions. This predictor need not be linear in the in-
put representation: it is possible to learn a linear predictor in some
extremely high dimensional space specified implicitly through a
kernel function. SVMs were originally suggested in the context
of binary classification, but more recently variants following the
same principles have also been developed and successfully applied
to more complex prediction tasks such as multiclass classification
and prediction of structured outputs such as sequences.

Training an SVM amounts to solving a quadratic programming
problem (see Section 2). Although general-purpose quadratic pro-
gramming solvers can only handle fairly small SVM instances,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’11, August 21–24, 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

much effort has been made in the past two decades to design special-
purpose solvers that can handle large-scale SVM instances. This
effort resulted in widely-used packages that can solve both “linear”
SVMs (i.e. where the prediction is linear in the input representa-
tion) and “kernelized” SVMs (where a non-linear kernel defines the
linear prediction space). For linear SVMs, stochastic methods such
as PEGASOS [13] and Stochastic Dual Coordinate Ascent [8] have
recently been established as being effective at solving extremely
large SVM instances, typically in less time than that which is re-
quired to read the data into memory. For kernel SVMs, most lead-
ing solvers are based on decomposing the dual optimization prob-
lem into small subproblems [11, 9, 4, 1, and see also Section 3].
Such approaches can indeed handle fairly large problems, provided
that the data fits in memory, but it is not uncommon for training to
require many hours or days, even using state-of-the-art optimizers.
There is therefore still a strong need for faster training of kernel
SVMs.

One attractive possibility for enabling faster SVM training is to
leverage the power of Graphical Processing Units (GPUs). GPUs
are highly parallel, structured, computational engines and are now
available relatively inexpensively and are found in many modern
computers. In this paper we discuss how SVM training can be ef-
ficiently implemented on a GPU, and present such an implementa-
tion for both binary and multiclass SVMs.

Several authors have recently proposed using GPUs for kernel-
ized SVM training [3, 2] and related problems [6]. These previ-
ous approaches, however, primarily focused on pointing out the
advantages of implementing standard algorithms on graphics hard-
ware, typically using GPU matrix-multiplication libraries, and not
on how these algorithms can be modified to better take advantage
of the GPU architecture. We study various algorithmic choices
for SVM training in the context of GPUs, discuss how the opti-
mal choices and algorithms on a GPU are different than those for
a serial implementation, and arrive at an implementation specif-
ically designed for graphics hardware. As with many previous
approaches, we assume that the dataset fits in memory, and fo-
cus mostly on the Gaussian kernel, although our implementation
can handle any kernel function which can be written in the form
K(x, y) = f(‖x‖ , ‖y‖ , 〈x, y〉) (see Section 5.2), and our ideas
apply even more broadly to any kernel which is an aggregation of
element-wise operations.

One particularly significant drawback of other GPU SVM solvers
is their lack of support for sparse datasets. On the CPU, taking ad-
vantage of sparsity is a simple matter, and sparse datasets are en-
countered frequently enough that many widely-used SVM solvers
treat all input vectors as sparse, by default [9, 4, 1]. On the GPU,
however, maximum performance is only achieved if memory ac-
cesses follow certain fairly-restrictive patterns, which are difficult

to ensure with sparse data. In contrast to other GPU SVM solvers,
our implementation does take advantage of sparsity in the training
set through a novel “sparsity clustering” approach (Section 5.3).

Overall, our implementation is orders of magnitudes faster then
existing CPU implementations, and several times faster on sparse
datasets then prior GPU implementations of SVM training.

2. SUPPORT VECTOR MACHINES
We will briefly review the optimization problems that need to

be solved in order to train binary and multiclass Support Vector
Machine (SVM) classifiers. For a complete description of Support
Vector Machines, motivating these optimization problems, we refer
the reader to, e.g., Schölkopf and Smola [12].

2.1 Binary classification
We consider training a kernel SVM with an unregularized bias

term. Let (x1, y1), . . . , (xn, yn), with xi ∈ R
d and yi ∈ {±1}, be

a training set of n labeled examples, and let K : Rd×R
d → R be a

(positive semi-definite) kernel. Here, we focus mostly on the Gaus-

sian kernel K(x1, x2) = e−γ‖x1−x2‖
2
2 , parametrized by a scale

parameter γ ∈ R, although the methods we present are applicable
to a wide range of kernels (see Section 5.2). Given a regularization
trade-off parameter C ∈ R, training an SVM classifier amounts to
solving the following optimization problem:

minimize
α∈Rn, b∈R

:
1

2
αTQα+ C

n
∑

i=1

max (0, 1− yi (b+ ci)) (1)

where here and throughout we denote ci
def
=
∑n

j=1 αjyjK(xi, xj),

which we will call the “responses”, and Q ∈ R
n×n is a matrix with

entries Qij
def
= yiyjK(xi, xj). The first term in (1) is a regulariza-

tion term (corresponding to a norm in an implied Hilbert space) and
the second term is the empirical loss. After training, the label of an
input vector x ∈ R

d is given by sign(b+
∑n

j=1 αjyjK(x, xj)).
As is commonly done, we instead solve the dual of (1):

maximize
α∈Rn

: 1Tα−
1

2
αTQα

subject to : ∀i (0 ≤ αi ≤ C)

:
n
∑

i=1

yiαi = 0

(2)

An optimum of (2) is also an optimum of (1), with b = yi − ci for
any i such that 0 < αi < C. The goal of this paper is to suggest an
efficient method for solving (2) on a GPU.

2.2 Multiclass Classification
For problems where the labels take on more then two possible

values, yi ∈ {1, . . . ,m}, we follow the multiclass SVM formu-
lation of Crammer and Singer [5]. In this formulation, each class
label y is associated with a coefficient vector α(y) ∈ R

n, and no
unregularized bias is allowed. Training amounts to solving the fol-
lowing optimization problem:

minimize
α(1),...,α(m)∈Rn

:
1

2

m
∑

y=1

(

α(y)
)T

Kα(y)
(3)

+ C

n
∑

i=1

max
y∈{1,...,m}

(

1− δy,yi − c
(yi)
i + c

(y)
i

)

where we denote c
(y)
i

def
=

∑n

j=1 α
(y)
j K(xi, xj), K ∈ R

n×n,

Kij = K(xi, xj) is the Gram matrix and δ is the Kronecker delta

function. Again, the first term is a regularization term (this time,
the sum of the norms of the predictors for each class) and the
second is again the empirical loss (a multiclass hinge loss—see
Crammer and Singer for further details). After training, the label of

an input vector x ∈ R
d is given by argmax

y

(
∑n

j=1 α
(y)
j K(x, xj)).

We will again solve the dual, which is given by:

maximize
α(1),...,α(m)∈Rn

:

n
∑

i=1

α
(yi)
i −

1

2

m
∑

y=1

(

α(y)
)T

Kα(y)

subject to : ∀i∀y
(

α
(y)
i ≤ Cδy,yi

)

: ∀i

(

m
∑

y=1

α
(y)
i = 0

)

(4)

3. OPTIMIZATION IN THE DUAL
Efficient kernel SVM optimizers tend to work on the dual formu-

lation (2). For most datasets, the kernel matrix is much too large
to fit in memory. Therefore, optimization is typically done by it-
eratively choosing a subset of the dual variables, which we will
call a working set, and updating the coefficients αi correspond-
ing to this set. While the early “chunking” algorithm [10] relied
on choosing a large working set, subsequent work has tended to
show that performing many computationally inexpensive updates
on small working sets leads to faster convergence than performing
fewer relatively expensive ones. Variants of the popular SMO algo-
rithm take these working sets to be as small as possible (two with
an unregularized bias, one without) [11, 7], while SVM-Light, by
default, uses working sets of size 10 [9].

The subproblem of optimizing the coefficients corresponding to
a given working set is again a quadratic program (though a smaller
one). For a binary classification problem, let I to be the working
set of indices to optimize (while holding the remainder fixed). We
assume the current set of dual variables α satisfies the constraints,
and consider as optimization variables the values ∆i to add to each
αi : i ∈ I. The subproblem is then given by:

maximize
∆i∈R:i∈I

: 1T∆ −
∑

i∈I

∆iyici −
1

2

∑

i,j∈I

∆i∆jQi,j

subject to : ∀i ∈ I (−αi ≤ ∆i ≤ C − αi)

:
∑

i∈I

yi∆i = 0

(5)

The submatrix Qi,j : i, j ∈ I may be found by evaluating only
1
2
|I| (|I|+ 1) kernel inner products, so for small working sets it

is reasonable to calculate it on-demand. Calculating each of the
responses ci : i ∈ I, however, requires the evaluation of n kernel
inner products.

This cost cannot be entirely avoided. However, instead of calcu-
lating the responses at each iteration, we can alternatively keep a
complete set of up-to-date responses on-hand, and merely update

them after each iteration:

c′i = ci +
∑

j∈I

∆jyjK(xi, xj) (6)

The computational cost of such an update is the same as that of
calculating the needed responses (ci : i ∈ I) afresh at each itera-
tion. However, we may benefit from having all responses available
to us, because they are useful in working set selection. In recent
years, it has been found that when optimizing linear SVMs without
an unregularized bias, the cost of choosing a working set in some
“smart” way is not justified–doing so randomly leads to far better

performance [13, 8]. For kernel SVMs, however, the cost of each
update is sufficiently high that it is often worthwhile to choose the
working set intelligently, even if this necessitates examining all val-
ues ci at each iteration [14]. SVM optimizers differ in the heuristics
used to choose the working set. We discuss this issue in detail in
Section 5.

Training a multiclass SVM in the dual poses similar challenges,
except that the situation is complicated by the fact that each exam-
ple is associated with m dual variables, subject to inequality and
equality constraints. This makes choosing the working set a more
constrained, and thus more difficult, problem.

4. THE GPU ARCHITECTURE
Optimizing the dual problem (2) on a serial architecture is fairly

well understood, and many successful implementations are avail-
able. In order to illustrate the different considerations involved
in optimizing (2) on a highly parallel Graphics Processing Unit
(GPU), we briefly discuss the relevant aspects of this specialized
hardware. We make no attempt to provide a full description of the
graphics hardware, and only highlight those aspects that most in-
fluence the different design decisions in a GPU versus CPU based
implementation of kernel SVM training. We implemented our opti-
mizer on a NVIDIA GPU using the Compute Unified Device Archi-
tecture (CUDA) tools, and refer here specifically to this hardware,
although the high-level design considerations are also relevant for
other graphics processors.

While one might simplistically think of a GPU as a massively-
parallel execution environment for a large number of independent
threads, full utilization of the graphics hardware is only possible if
the operations performed by concurrently-executing threads are, in
a sense, “compatible”. In this regard, a GPU shares many aspects
of Single-Instruction-Multiple-Data computers.

On the coarsest level, a CUDA program is executed by running
the same code on some number of threads, which are distributed
among the GPU’s processors. The threads possess a small amount
of fast local memory which is shared among blocks of threads (see
below), but must copy data back and forth between this small fast
local memory and the higher latency main memory.

In the problem which we are considering, the most important
efficiency consideration is, overwhelmingly, access to main mem-
ory ("global memory"). This memory is relatively high bandwidth,
but is also high latency. The graphics card performs automatic “la-
tency hiding”, in which a thread waiting on a memory access is
swapped out for one which is not. This is helpful, but does not
fully solve the problem—waiting for memory accesses can still of-
ten dominate the runtime of a GPU program. An important pro-
gramming technique for improving the memory-access patterns of
a GPU program is called “coalescing”: whenever aligned blocks of
16 consecutive threads (with consecutive thread identifiers) access
aligned blocks of 16 consecutive memory locations, these accesses
will be “coalesced” into a single memory access, resulting in a sig-
nificant speedup.

The threads involved in a computation are organized into “blocks”
of some number of threads (256 in our application). Each such
block has an associated pool of “shared memory”, which is much
faster than global memory, but slower then registers, and may be
accessed by all of the threads in the block. The fact that shared
memory is so much faster than global memory may be exploited
through a technique known as “staging”, in which blocks of global
memory are copied into shared memory using coalesced reads, ma-
nipulated (not necessarily in a coalesced fashion) by the threads in
a block, and then (possibly) staged back into global memory using
coalesced writes.

In applications such as ours, where a moderate amount of com-
putation is performed on a large amount of data, taking full advan-
tage of coalescing (often via staging) is of the highest importance.
Hence, we will focus primarily on this issue for the remainder of
the paper.

5. OUR IMPLEMENTATION
We are now ready to describe the approach we take in optimiz-

ing the SVM training problems (2) and (4) on a GPU. Our optimizer
closely follows the sketch of Section 3. Computation is divided be-
tween the CPU and GPU, with large parallel computations being
performed on the graphics hardware, and lightweight serial tasks
on the host processor. The vectors α are stored in both the host
machine’s main memory, and the graphics card’s global memory.
These two copies must be kept in sync throughout the optimiza-
tion. The response vectors c are stored in the graphics card’s global
memory, with only the working set values (i.e. for i ∈ I) passed
to the CPU at each iteration. The cost of these memory transfers
is negligible. We begin by initializing α = 0 and c = 0, and then
proceed iteratively, performing the following steps:

1. On the GPU, choose a working set I

2. On the CPU, calculate the Gram matrix restricted to the work-
ing set I, and optimize the subproblem (5). This results in
updates to the values αi for i ∈ I.

3. On the GPU, update all elements of c in response to the
change in αi for i ∈ I as in (6).

For the subproblem size that we use, the cost of step (2), per-
formed on the CPU, is insignificant, relative to the GPU portions
of the algorithm. For multiclass problems we follow a similar ap-

proach, at each iteration optimizing over α
(y)
i for i ∈ I and all

y ∈ {1, . . . ,m}.
While it is possible to use working sets as small as two, we use

larger working sets, optimizing larger subproblems. This choice is
motivated by the observation (Section 4) that the primary efficiency
constraint, on the GPU, is not computation, but is rather memory

accesses. We may calculate the kernel matrix rows corresponding
to a sufficiently small working set in only one pass over the training
data. Hence, in order to extract the maximal utility from each such
pass, one would like to use working sets which are as large as is
feasible. Conversely, one will often experience diminishing returns
(in terms of the amount of “progress” made per iteration) as the size
of the working set grows. We found the use of size 16 working sets
to be most convenient.

For a sparse dataset, ensuring that memory accesses are coa-
lesced is more difficult than it is for a dense dataset, since if “ad-
jacent” threads are accessing training vectors with different spar-
sity patterns, then they will not be accessing adjacent memory ad-
dresses. We resolve this by first observing that, on sparse machine
learning datasets, certain features may occur more frequently than
others, or certain sets of features might tend to co-occur, resulting
in distinct training vectors often having similar sparsity patterns.
We therefore propose clustering the dataset by sparsity pattern, us-
ing a simple greedy heuristic, about which more will be said in
Section 5.3. Our implementation is structured in such a way that
every element of each thread block is always working on the same
cluster, i.e. on vectors with the same sparsity pattern, permitting
memory accesses to be coalesced.

In the following sections, we discuss the heuristic procedure used
to choose the working set, and its GPU implementation (Step 1,
discussed in Section 5.1), updating of the cis (Step 3, discussed in
Section 5.2), how sparsity is handled via clustering (Section 5.3),

and finally, we briefly mention how labels are predicted for new
examples following training (Section 5.4).

5.1 Heuristics
The intuition behind the heuristics which we use to select the

working set I is the same for both binary classification and mul-
ticlass: we wish to select the working set which will result in the
largest increase in the dual objective function value. We use “first-
order” heuristics, in the sense that we estimate the quality of a
working set by looking only at the first derivatives of the dual objec-
tive. Second-order heuristics have been found to outperform first-
order heuristics for binary classification problems with an unregu-
larized bias, when the working set is of size 2 [7]. However, it is
not clear how to efficiently generalize such heuristics to either the
larger working sets which we must use in order to minimize the
number of memory accesses, or to the multiclass objective.

For binary classification problems, we use the same heuristic as
SVM-Light [9]. The goal of this heuristic is to choose those ele-
ments with respect to which the partial derivatives of the dual ob-
jective are large, and to do so in such a way that the set of cho-
sen indices allows for large-magnitude changes which satisfy the
constraints. The partial derivatives of the dual objective for binary
classification (2) are:

∂gb
∂αi

= 1− yici

Due to the equality constraint
∑

i yiαi = 0, any increase in yiαi

for one index i must be matched by corresponding decreases for
others. As a result, our size-16 working set will be chosen to
contain 8 elements maximizing yi times the corresponding partial
derivative, and 8 minimizing it. We must also respect the inequal-
ity constraints 0 ≤ αi ≤ C, so cannot increase any αi = C, nor
decrease any αi = 0. Hence, indices i with αi = C are not consid-
ered as candidates for increase during working set selection, with
the αi = 0 case being handled analogously.

For multiclass problems, our heuristic is taken from Crammer
and Singer [5]. The intuition behind this heuristic is the same as for
binary classification, although there are additional complications,
due to the fact that there are multiple dual variables corresponding
to each element of the training set. The partial derivatives of the
multiclass dual objective (4) are:

∂gm

∂α
(y)
i

= δy,yi − c
(y)
i

Here, δ is the Kronecker delta function. Ideally, we would choose
those indices i which maximize the magnitude of the “row gra-

dient” {α(y)
i : y ∈ {1, . . . ,m}}. However, this simple choice

ignores the equality constraints. The ideal solution would be to
project these row gradients onto the constraints, but doing so is it-
self a nontrivial optimization problem, and inappropriate as a com-
ponent of a “simple” heuristic. Instead, we will approximate these
projected row gradients by identifying, for each i, the pair of labels
y+ and y− for which increasing the dual variable corresponding to
the first while decreasing that corresponding to the second by the

same amount (thus respecting the constraint
∑

y α
(y)
i = 0) results

in the largest first-order improvement in the dual objective:

y+ = argmax
y:α

(y)
i

<C

∂gm

∂α
(y)
i

y− = argmin
y

∂gm

∂α
(y)
i

Defining vi = ∂gm/∂α(y+)

i
− ∂gm/∂α(y

−
)

i
as the magnitude of the

gradient in the direction induced by y+ and y− gives the heuristic
value for the index i. One can see that this heuristic value lower-
bounds the magnitude which would result from properly projecting
the row gradient onto the constraints, and furthermore that it must
be positive if a nonzero improvement is possible. The working set
I will be composed of the 16 indices i maximizing maximizing vi.

Both of these heuristics are implemented on the GPU. Calcu-
lation of the heuristic values themselves is computationally inex-
pensive, and may be performed independently for each training
example. Hence, distributing this task among the graphics card’s
threads is straightforward. Finding the maximum (equivalently,
minimum) values of these heuristics is a parallel max-reduction,
which requires some care to implement efficiently. Our implemen-
tation uses a “chunking-and-sorting” procedure, which begins by
breaking up the list of heuristic values into chunks, each of which
is sorted in parallel using bitonic sort. Then, the maximum values
of each chunk are copied into a new list, and we repeat until the
total number of elements is below some threshold value. At this
point, there are few enough values that parallelization on the GPU
is no longer cost-effective, so the remaining heuristic values are
copied to the CPU, and the maxima located.

This reduction step is computationally expensive—on our exper-
imental datasets, performing it occupies a significant proportion of
the runtime. For smaller working sets (say, size 2, rather than size
16), a similar heuristic, or even a superior second-order heuristic,
could be implemented far more efficiently. We have found, how-
ever, that the benefits of using large working sets outweigh the extra
time spent in the heuristic.

5.2 Updates
The final step in an iteration, and the “heart” of the optimization

procedure, is updating the responses c in response to the changes in
the dual variables α. Our general approach could theoretically sup-
port any kernel which may be written in terms of element-wise op-
erations on the vectors, but our implementation currently only sup-
ports kernel functions which can be written in the form K(x, y) =
f(‖x‖ , ‖y‖ , 〈x, y〉), a representation which supports several pop-
ular kernels, including the Gaussian, sigmoid and polynomial ker-
nels. Efficient evaluation of kernel inner products is accomplished
by precalculating ‖x‖ for every training vector, and then calculat-
ing 〈x, y〉 by iterating over those vector elements which are nonzero
in both x and y, taking the product of each such pair, and summing
the results. The calculation of these inner products amounts to ma-
trix multiplication, which is efficiently implementable on a GPU.

The primary difficulty in the calculation of these kernel elements
is in ensuring that memory accesses are coalesced. If the train-
ing vectors are dense, then one natural approach would be to make
the 16 · i + jth thread responsible for calculating the kernel inner
product of the ith training vector with the jth working set element,
by first copying the 16 elements of the working set into a separate
buffer (so that they may be read out 16 elements at a time), and
then having blocks of 256 threads cooperatively stage in 16 × 16
chunks of the training and working sets, before calculating their
product. This approach would ensure coalesced memory accesses,
and is popular in matrix-multiplication implementations.

As is illustrated in the left-hand side of Figure 1, if the training
vectors are sparse, then this simple strategy fails, because the differ-
ing sparsity patterns of the training vectors cause memory accesses
of the working set to be uncoalesced. Our solution, illustrated in the
right-hand side of the same figure, is to cluster the training vectors
by sparsity pattern. This causes blocks of sequentially-numbered
threads to access training vectors with the same sparsity pattern,

1

2

3

4

5

6

7

Sparse Vectors Working Vectors

1

7

3

6

7

1

2

5

6

2

3

4

6

7

2

4

5

7

1

2

3

4

5

6

7

Clustered Vectors Working Vectors

Figure 1: Illustration of memory-access patterns when the training data is sparse (left), or clustered by sparsity pattern (right).

The “sparse vectors” are a set of vectors with different sparsity patterns, with the index of each nonzero element being the number

contained within the corresponding box. The “clustered vectors” represent a sequence of consecutive training vectors which all have

the same sparsity pattern, with the nonzero indices being the numbers to the left. The “working vectors” are dense copies of the 16
elements of the working set I. Note that, in the right-hand diagram, the memory locations which must be accessed lie in the same

rows, illustrating that they may be read as aligned 16-element chunks.

ensuring that their accesses to the working set will be coalesced.
This comes at the cost of requiring that additional elements occa-
sionally be introduced into the training vectors, in order to ensure
that all elements of each cluster have the same sparsity pattern.

Algorithm 1 contains pseudocode for updating the “responses”
ci =

∑n

j=1 αjyjK(xi, xj) for all i, in response to a change in 16
αs. As before, the working set vectors are copied out of the training
set into a temporary dense matrix, before the call to the update
routine. Within the update, the kth training vector is assigned to
the kth thread, which calculates the kernel inner products of this
vector with all 16 elements of the working set. Each block of 256
threads repeatedly stages in 16 × 16 chunks of the working set.
After each such chunk has been staged in, each thread steps through
it, updating the inner products for which it is responsible. Note
that in the key inner-loop of the psuedocode, only registers and
shared memory are accessed, and these chunks of shared memory
are staged in using coalesced reads, thanks to the clustering of the
training data.

5.3 Clustering
Clustering by sparsity pattern will result in the greatest improve-

ment in runtime if the clusters Si are chosen to minimize:
∑

i

|{j : ∃x ∈ Si (xj 6= 0)}|

However, it would be counterproductive to perform an extremely
high-quality clustering if the resulting savings in optimization run-
time were to be less than the amount of time spent finding the clus-
ters. Hence, we wish only to find a coarse clustering quickly. The
solution which we propose is to find the clusters greedily, in a sin-
gle pass over the training data, on the CPU. We define the nonzero
elements of a cluster to be the union of the nonzero elements of the
vectors assigned to that cluster. If we assign a new training vector
x to cluster S, then the sparsity patterns of both S and x will be
changed, via the addition of new elements, in order to bring them
into correspondence. Algorithm 2 simply iterates over the training
set, greedily assigning each x to the cluster which results in the
insertion of the fewest new elements.

There is one additional parameter to this algorithm which re-
mains to be explained: the maximum number of “active clusters”
k, denoting the number of candidate clusters which will be consid-
ered for each training vector. If k = ∞, then all clusters are active
from the start, resulting in a runtime which is quadratic in n. When

k is smaller, a training vector can only be assigned to those clusters
which are active at the time it is considered, which improves the
runtime from O(n2) to O(nk). Empirically, we have found that by
decreasing k, clustering times can be improved dramatically, with
little degradation in quality.

5.4 Classification
It is also important that it be possible to rapidly classify testing

vectors using a learned classifier. Recall that we must calculate, for
each testing vector x:

sign

(

b+
n
∑

i=1

αiyiK (x, xi)

)

(7)

Our classification routine is extremely similar to the update rou-
tine of Algorithm 1. The testing set is first broken up into pseudo-
“working sets” of size 16. Kernel inner products are calculated in
the same fashion as before, after which the sums in equation 7 are
computed using a parallel sum-reduction. The key difference is
that, during classification, we need only consider those elements of
the training set which have nonzero coefficients αi in equation 7.
As a result, before classification, we “finalize” the learned classifier
by discarding all of the training vectors with zero coefficients, and
re-clustering the remaining vectors.

5.5 Other Approaches
The design choices which we have thus far described have the

side-effect of making it difficult for our algorithm to incorporate
certain optimizations which are popular in other implementations.

Most SVM optimizers keep a “cache” of recently-computed rows
of the kernel matrix, based on the intuition that the same elements
of the training set will be repeatedly chosen by the heuristic, par-
ticularly when the algorithm is close to convergence. If the kernel
matrix rows corresponding to these elements are on-hand, then sig-
nificant computational effort may be saved. On the GPU, keeping a
cache of kernel matrix rows comes at a high cost. As it stands, our
algorithm never explicitly stores individual elements of the kernel
matrix, and global memory accesses are sufficiently expensive that
the performance impact of doing so would be non-negligible. This
cost might be justified in some cases, particularly on those datasets
containing a small number of training examples, for which cache
elements are likely to be accessed frequently. Our GPU implemen-
tation, however, is deliberately targeted towards datasets containing

Algorithm 1 GPU algorithm which, for the binary classification
objective, updates the responses ci =

∑n

j=1 αjyjK(xi, xj) based
on changes of the dual variables αi to αi + ∆i for i ∈ I, where
I is the working set. This pseudocode should be read as if it were
executing in lockstep on all threads, although in practice synchro-
nization must be performed in order to guarantee that the threads
within each block do not fall out of sync. The training vectors for
the working set are stored (as dense vectors) in u, while the nonze-
ros of the current cluster are stored in x, with J being the indices
of these nonzeros.

// Thread t ∈ {0, . . . , 255} working on cluster C
input u[i][j]: ith element of jth vector of working set
input y[i]: label of ith vector of working set
input ∆[i]: change in α for ith vector of working set
input J [i]: index of ith nonzero of C
input x[i][j]: ith nonzero of jth vector of C
in/out c[i]: response for ith vector of C
// Calculate inner products a[i] = 〈x[· · ·][t], u[· · ·][i]〉
let a[i] := 0 for i ∈ {0, . . . , 15}
for i = 0 to |J | step 16

let i′ := min {i+ 15, |J |}
Stage u[J [i], . . . ,J [i′]][0, . . . , 15] into shared memory
for j = i to i′

Copy x[j][t] into a register
for k = 0 to 15

let a[k] := a[k] + x[j][t] · u[J [j]][k]
// Update classification c[t]
let b := 0
for i = 0 to 15

let k := K (‖x[· · ·][t]‖ , ‖u[· · ·][i]‖ , a[i])
let b := b+∆[i] · y[i] · k

let c[t] := c[t] + b

a relatively large number of high dimensional sparse examples, for
which it is unlikely that the use of a cache would prove to be cost-
effective.

Bordes et al. [1] propose an elegant compromise between the use
of a heuristic, and choosing working sets randomly. Their approach
is to maintain a relatively large “active set” of training vectors, for
which the responses c are kept up-to-date, and from which elements
of the working set are selected using a heuristic. Less useful ele-
ments of the active set are periodically removed, and replaced with
new elements, selected randomly from the complement of the ac-
tive set. This reduces the number of elements of c which must be
kept up-to-date, thus making both the heuristic, and the c-updates,
less expensive. Unfortunately, it is difficult to reconcile this op-
timization with our clustering-based solution to handling sparsity,
since it would be necessary to re-cluster the entire active set after
every addition or removal of elements.

Another popular optimization is the use of a “shrinking” heuris-
tic. This heuristic is based on the observation that it may be the
case that, during optimization, some correctly-classified training
examples will stray so far from the decision surface that they are
unlikely to ultimately make any contribution to the optimal clas-
sifier. Hence, it is safe to remove these vectors, provided that a
check is performed, once optimization completes, to ensure that
these removed examples are still correctly-classified, and are out-
side the margin. Because our clustering-based approach makes it
difficult to remove individual elements from the training set during
optimization, we do not make use of this optimization.

Algorithm 2 Algorithm for greedily clustering a dataset by sparsity
pattern. The algorithm passes once through the dataset, assigning
each vector to the cluster to which its addition results in the intro-
duction of the smallest number of nonzero elements. The number
of “active clusters” is the total number of candidate clusters which
are available at a given time. Choosing this number to be smaller
than the total number of clusters dramatically improves runtime, at
the cost of a very slight penalty to clustering performance.

input n: number of training vectors
input k: number of active clusters
input ℓ: maximum cluster size
input x[i][j]: jth element of ith training vector
output S[i]: ith cluster
let S[i] := ∅ for i ∈ {0, . . . , ⌈n/ℓ⌉ − 1}
// a[i] will be 1 for “active” clusters, 0 otherwise
let m := max (k, ⌈n/ℓ⌉)
let a[i] := 1 for i ∈ {0, . . . ,m− 1}
let a[i] := 0 for i ∈ {m, . . . , ⌈n/ℓ⌉ − 1}
for i = 1 to n in random order

// calculate costs c[j] for active clusters j
let Jx := {k : x[i][k] 6= 0}
for all j : a[j] = 1

let JS := {k : ∃x′ ∈ S[j] (x′[k] 6= 0)}
let c[j] := |Sj | |Jx\JS |+ |JS\Jx|

// insert x[i] into the lowest-cost cluster
let j′ := argmin

j:a[j]=1

c[j]

let S[j′] := S[j′] ∪ {x[i]}
// activate a new cluster, if necessary
if |S[j′]| = ℓ

let a[j′] := 0
if m < ⌈n/ℓ⌉

let a[m] := 1
let m := m+ 1

6. PERFORMANCE COMPARISON
We compared the runtime of our GPU-based SVM training im-

plementation to the fastest CPU-based implementations of which
we are aware, as well as to a previous GPU-based implementation.
We use these experiments to study the efficiency of specific aspects
of our implementation. We tested all implementations on the same
machine, which contains an Intel Core i7 920 CPU, and 12G of
memory, as well as a pair of NVIDIA Tesla C1060 graphics cards
with 4G of memory. The tested GPU implementations use only a
single graphics card, so the other is left idle.

Our testing datasets are listed in Figure 1. The Adult and MNIST
datasets were downloaded from Léon Bottou’s LASVM web page1.
Cov1 is the covertype-1 dataset of Blackard & Dean. TIMIT is a
phonetically transcribed corpus of speech spoken by North Amer-
ican speakers. We use MFCC features extracted from every 10ms
frame of a subset of this dataset, along with their first two deriva-
tives, for framewise classification of the stop consonants. Both the
MNIST and TIMIT datasets are multiclass, but we also used them
in testing binary classification experiments by taking the digit 8 and
phoneme /k/ to be the positive classes, respectively, and the union
of all other labels to be the negative class. The regularization and
Gaussian kernel parameters for the Adult dataset are taken from
Platt [11], while those for MNIST and Cov1 are taken from Bordes
et al. [1], except that the regularization parameter on MNIST was

1
http://leon.bottou.org/projects/lasvm

http://leon.bottou.org/projects/lasvm

DATA SET TRAINING SIZE TESTING SIZE DIMENSION CLASSES BINARY C γ

ADULT 31562 16282 123 2 1 0.05
COV1 522911 58101 54 2 3 1
MNIST 60000 10000 768 10 1 0.02
TIMIT 63881 22257 39 6 1 0.025

Table 1: Dataset properties and parameters. The “binary C” column contains the regularization trade-off parameter used for

binary classification on each dataset. For multiclass, we choose C to be half as large.

CRAMMER & SINGER OURS

DATA SET TIME SPEEDUP TIME SPEEDUP

MNIST 40M 1× 25S 97×
TIMIT 26M 1× 13S 121×

Table 4: Performance comparison of our multiclass GPU

implementation to the CPU implementation of Crammer and

Singer [5]. As in Table 3, the reported runtimes do not include

time spent during initialization (or clustering).

decreased from 1000 to 1, which we have observed to improve the
rate of convergence, with nearly no impact on classification perfor-
mance.

We instrumented all of the tested implementations to periodically
output trace points containing the current program state and the
total elapsed time. The time spent inside this instrumentation code
was subtracted from this running total. We then used these traces to
find the first time at which the relative duality gap, 2(p−d)/(p+d),
where p is the primal objective value and d the dual, dropped below
the threshold ǫ = 0.01.

6.1 Clustering
We first investigate the efficiency of our simple clustering algo-

rithm at creating “good” clusters, i.e. where the sparsity patterns
of all data points in each cluster are similar. We investigate the
effect of the parameter k controlling the number of active clusters
under consideration (see Section 5.3) on both the runtime, and on
the quality of the resulting clustering. Table 2 displays the time re-
quired to cluster each of the sparse datasets into clusters of size 256,
using a varying number of active clusters (including keeping all
clusters “active”). We see that by choosing a relatively small num-
ber of active clusters, we can achieve fast clustering, with nearly
the same quality as we would have with all clusters active. Hence,
our implementation defaults to using 64 active clusters.

We also see from Table 2 that the clustering is effective at cre-
ating sparse clusters, with the number of non-zeros per cluster be-
ing well below the overall dimension of the data. However, on
the highly sparse Adult and MNIST data sets, the average number
of non-zeros per cluster is still well above the average number of
non-zeros per data vector, showing that we do access many extra
elements, although far fewer then we would if the data were treated
as dense, as it is in other GPU implementations. We have found
that the exploitation of sparsity has a concrete impact on perfor-
mance: on the three sparse datasets on which we experimented, it
alone was responsible for roughly a 1.5× speedup.

6.2 Training Runtime
In Table 3 we report the actual training runtimes, and speedups

relative to the CPU implementation, for training binary classifiers

using the various GPU and CPU implementations2. We compare to
the following:

• LIBSVM [4], a CPU-based implementation using SMO with
the second-order heuristic of Fan et al. [7]. This is, for these
datasets, the fastest CPU-based implementation of which we
are aware.

• GPUSVM [3], which is a GPU-based implementation of es-
sentially the algorithm used by LIBSVM.

We can see that our method efficiently utilized the GPU, taking
between one and two orders of magnitude less time then the best
CPU implementation (this of course depends on the specific CPU
and GPU used). Our method also outperforms the previous GPU
implementation on all datasets, even the dense TIMIT dataset (on
which our implementation does not enjoy the benefit of sparsity),
and Cov1, which contains a very small number of nonzeros per
vector, on average, causing constant per-vector costs (such as eval-
uating the heuristic) to have a greater impact on the performance
than those which depend on the dimensionality of the data (such
as kernel evaluations). Our implementation is particularly effective
on relatively high-dimensional sparse data sets, such as MNIST,
where more time is spent performing kernel evaluations. On lower
dimensional data sets, the cost of the chunking-and-sorting proce-
dure by which we select our working set (see Section 5.1) becomes
more significant, and the gain relative to Catanzaro et al. is smaller.
Even on datasets such as TIMIT and Cov1, the benefits of using
larger working sets, and the better handling of sparsity, outweigh
the cost of chunking-and-sorting, and we still observe performance
gains over Catanzaro et al.

In Table 4, we report runtimes for training multiclass SVMs,
comparing with Koby Crammer’s CPU-based implementation [5].
We are not aware of any previously published GPU implementation
for multiclass SVMs. We see a roughly 100-fold speedup over the
CPU implementation.

Finally, we measured proportions of training runtime spent within
various components of the optimization routine. The results are
plotted in Figure 2. On all datasets except for Cov1, the “update”
step takes the majority of the runtime (on Cov1 it takes roughly
43%). This update code utilizes the GPU very efficiently, as all
memory accesses are coalesced, indicating that we cannot expect
to improve our runtime much by more careful coding. The time
spent choosing the working set, and in particular performing the

2We are aware of two other GPU SVM implementations. Car-
penter [2] is algorithmically very similar to GPUSVM, and re-
ports roughly the same speedups on the Adult, Cov1 and MNIST
datasets, relative to LIBSVM, as we observed for GPUSVM (al-
beit with different values of the parameters C and γ). This is a
Windows-only implementation, so we could not experiment with
it on our test machine. The other, recently made available at
http://mklab.iti.gr/project/GPU-LIBSVM, will be
presented in the upcoming WIAMIS’11 conference, and is based
on precomputing the full Gram matrix on the GPU. Such an ap-
proach is only applicable when there are few enough training ex-
amples that this matrix can be stored in memory.

http://mklab.iti.gr/project/GPU-LIBSVM

16 ACTIVE 64 ACTIVE MAX. ACTIVE

DATA SET AVG. NZ AVG. NZ TIME AVG. NZ TIME AVG. NZ TIME

ADULT 13.9 57.5 0.042S 48.6 0.13S 45.7 0.24S

COV1 12.0 15.9 0.44S 12.8 1.3S 12.2 20S

MNIST 150 406 0.43S 357 1.5S 345 4.6S

Table 2: Time spent clustering each of the datasets of Table 1 into clusters of size 256, and the resulting average number of nonzeros

per vector (see Table 1 for the dataset dimensions). TIMIT is a dense dataset, and is therefore not included.

LIBSVM GPUSVM OURS

DATA SET TIME SPEEDUP TIME SPEEDUP TIME SPEEDUP

ADULT 61S 1× 4.5S 14× 1.2S 52×
MNIST 4.4M 1× 11S 23× 3.9S 68×
TIMIT 4.6M 1× 4.9S 56× 3.5S 78×
COV1 4.5H 1× 11M 26× 7.2M 38×

Table 3: Performance comparison of our GPU implementation to the CPU implementation LIBSVM [4] and GPU implementation

GPUSVM [3]. All three implementations used the termination criterion 2(p−d)/(p+d) < 0.01, where p is the primal objective, and

d the dual. The reported runtimes do not include time spent loading the dataset, during initialization, or (for our implementation)

clustering the training set by sparsity pattern.

Binary Multiclass

A
d
u
lt

Clustering

Heuristic

Update

Other

C
o
v
1

M
N

IS
T

T
IM

IT

Figure 2: Illustration of the how runtime is distributed among the various parts of the optimization routine. Unlike in Tables 3 and

4, time spent clustering is included in these plots. The “heuristic” portion includes the time spent evaluating the heuristic and finding

its maximum values. The “other” portion is mostly occupied by copying data between the CPU and GPU, optimizing subproblems

on the CPU, and evaluating and testing the termination criterion.

chunking-and-sorting procedure, consumes a significant, but not
dominant, portion of the runtime. This seems to be a good trade-
off in terms of the time spent choosing the working set, versus the
effectiveness of this choice. As discussed in Section 5, neither clus-
tering the data by sparsity pattern, nor optimizing the subproblems
(both performed on the CPU), require a significant amount of time.

7. SUMMARY
We presented a method for efficiently training binary and mul-

ticlass kernel SVMs using a GPU. We discussed various design
considerations, which are often different than they would be for a
serial CPU-based implementation, and also presented a novel ap-
proach for handling sparse data on the GPU. The result is an imple-
mentation of SVM training that is orders of magnitude faster then
CPU implementations, and several times faster than previous GPU
implementations. It is also the first GPU implementation we are
aware of that handles multiclass classification.

Our implementation is freely available3 and easy to set up and

3
http://nagoya.uchicago.edu/~cotter/
projects/gtsvm

use. It includes not only a command-line interface, which is sim-
ilar to those of other popular SVM solvers, but also C library and
Matlab interfaces, all of which have full support for multiclass clas-
sification, sparse datasets, and all implemented kernels.

References

[1] A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel
classifiers with online and active learning. JMLR, 6:1579–
1619, September 2005.

[2] A. Carpenter. CUSVM: A CUDA implementation of
support vector classification and regression. http://

patternsonascreen.net/cuSVM.html, 2009.

[3] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vec-
tor machine training and classification on graphics processors.
In ICML’08, pages 104–111, 2008.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support

vector machines, 2001. Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm.

http://nagoya.uchicago.edu/~cotter/projects/gtsvm
http://nagoya.uchicago.edu/~cotter/projects/gtsvm
http://patternsonascreen.net/cuSVM.html
http://patternsonascreen.net/cuSVM.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[5] K. Crammer and Y. Singer. On the algorithmic implemen-
tation of multiclass kernel-based vector machines. JMLR, 2:
265–292, March 2002. ISSN 1532-4435.

[6] T.-N. Do, V.-H. Nguyen, and F. Poulet. Speed up SVM al-
gorithm for massive classification tasks. In ADMA’08, pages
147–157, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] R.-E. Fan, P.-S. Chen, and C.-J. Lin. Working set selection us-
ing second order information for training support vector ma-
chines. JMLR, 6:1889–1918, 2005.

[8] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sun-
dararajan. A dual coordinate descent method for large-scale
linear SVM. In ICML’08, pages 408–415, 2008.

[9] T. Joachims. Making large-scale support vector machine
learning practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector Learn-

ing. MIT Press, 1998.

[10] E. Osuna, R. Freund, and F. Girosi. Training support vector
machines: an application to face detection. In CVPR’97, June
1997.

[11] J. C. Platt. Fast training of support vector machines using Se-
quential Minimal Optimization. In B. Schölkopf, C. Burges,
and A. Smola, editors, Advances in Kernel Methods - Support

Vector Learning. MIT Press, 1998.

[12] B. Schölkopf and A. J. Smola. Learning with Kernels: Sup-

port Vector Machines, Regularization, Optimization, and Be-

yond. MIT Press, Cambridge, MA, USA, 2001. ISBN
0262194759.

[13] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal
Estimated sub-GrAdient SOlver for SVM. In ICML’07, pages
807–814, 2007.

[14] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pega-
sos: Primal Estimated sub-GrAdient SOlver for SVM. Math-

ematical Programming, pages 1–34, October 2010.

	Introduction
	Support Vector Machines
	Binary classification
	Multiclass Classification

	Optimization in the Dual
	The GPU Architecture
	Our Implementation
	Heuristics
	Updates
	Clustering
	Classification
	Other Approaches

	Performance comparison
	Clustering
	Training Runtime

	Summary

