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ABSTRACT

Vowel durations are most often utilized in studies addressing
specific issues in phonetics. Thus far this has been hampered
by a reliance on subjective, labor-intensive manual annota-
tion. Our goal is to build an algorithm for automatic accu-
rate measurement of vowel duration, where the input to the
algorithm is a speech segment contains one vowel preceded
and followed by consonants (CVC). Our algorithm is based
on a deep neural network trained at the frame level on man-
ually annotated data from a phonetic study. Specifically, we
try two deep-network architectures: convolutional neural net-
work (CNN), and deep belief network (DBN), and compare
their accuracy to an HMM-based forced aligner. Results sug-
gest that CNN is better than DBN, and both CNN and HMM-
based forced aligner are comparable in their results, but nei-
ther of them yielded the same predictions as models fit to
manually annotated data.

Index Terms— vowel duration measurement, convolu-
tion neural networks, deep belief networks, hidden Markov
models, forced alignment

1. INTRODUCTION

Vowel durations are often measured in studies addressing spe-
cific issues in phonetics [1, 2, 3]. These typically utilize vowel
durations as a dependent measure, examining how duration
changes across situations, e.g., when vowels are elicited in
different contexts, produced by different speakers, etc.

To obtain accurate data most researchers have relied on
manual annotation. This approach is clearly not ideal: it is
highly resource intensive and fundamentally subjective. To
address these issues, recent phonetic studies have used com-
putational methods to measure acoustic properties of speech
automatically, e.g., [2, 4, 5]. These methods greatly reduce
the resources required as well as minimizing the role of sub-
jective judgments.

In this paper we try to address the problem of automatic
measurement of vowel duration. Most of the work related
to vowel duration measurement was done using HMM-based
forced alignment. However, those aligners require the pho-

netic transcription of the input signal, and should be carefully
tuned [6]. Our work is focused on input of speech segments
where a single vowel is preceded and followed by consonant
(CVC), and the phonetic transcription is not needed.

Here we take a different route and train a classifier at the
frame-level to detect whether the frame is a vowel or not. We
used state-of-the-art deep neural network (DNN) as a classi-
fier, comparing two DNN architectures: deep belief network
(DBN) and convolutional neural network (CNN). Both archi-
tectures have produced good results in previous speech pro-
cessing studies [7, 8]. Each architecture was trained on man-
ually annotated data and their performance was compared. At
inference time, the classifier predicts the probability of each
frame of the input as being a vowel. The predictions are
smoothed out to have a single chunk representing the vowel,
and then vowel duration is computed.

We compare the accuracy of DBN, CNN and HMM-
based force aligner on manually annotated data. The results
show that CNN is better than DBN, and the CNN and HMM-
based forced aligner are comparable. We further evaluated
the performance of CNN and HMM on a phonetic study,
which examines how placing words in a context that strongly
emphasizes processing of sentence structure would influence
speech articulation [3]. The results suggest that the CNN-
based classifier is comparable to the HMM-based forced
aligner in terms of deviation from the manual annotations.
However, it seems that neither method is clearly superior in
terms of matching the manual annotations.

The paper is organized as follows. In Section 2 we state
the problem definition formally. In Section 3 we present the
acoustic feature set and the architecture of the network used.
In Section 4 we briefly describe the benchmark data and how
it was recorded. We present a detailed experimental results
and analysis in Section 5. We conclude the paper in Section 6.

2. PROBLEM SETTING

In the problem of vowel duration measurement we are pro-
vided with a speech signal which includes exactly one vowel
preceded and followed by consonants, often denoted CVC.
Our goal is to predict the vowel duration accurately. We de-

978-1-4673-7454-5/15/$31.00 ©2015 IEEE



note the domain of the acoustic feature vectors by X ⊂ Rd.
The acoustic feature representation of a speech signal is there-
fore a sequence of vectors x = (x1, x2, . . . , xT ) where xi ∈
X for all 1 ≤ i ≤ T . The length of the input signal varies
from one signal to another, thus T is not fixed. We denote by
X ∗ the set of all finite length sequences over X . In addition,
we denote by tb ∈ T and te ∈ T the vowel onset and offset
times, respectively, where T = {1, ..., T}. For brevity we set
t = (tb, te).

Our goal is to learn a function, denoted f , which takes as
input a speech signal x and returns the pair t. The vowel du-
ration can be computed from the output of this function. In
other words, f : X ∗ → T 2 is a function from the domain of
all possible CVC speech segments to the domain of all possi-
ble onset and offset pairs.

In order to qualify the quality of the prediction we need
to define a measure of performance or evaluation metric be-
tween the predicted and the target onset and offset pairs. We
denote by γ(t, t̂) the cost of predicting the pair t̂ while the
target pair is t. Formally, γ : T 2 × T 2 → R is a function
that gets as input two ordered pairs, and returns a scalar. We
assume that γ(t̂, t) ≥ 0 for any two pairs of time sequences,
and γ(t, t) = 0. The cost function we use is:

γ(t̂, t) =
[
|t̂b − tb| − εb

]
+
+
[
|t̂e − te| − εe

]
+
, (1)

where [π]+ = max{0, π}, and εb, εe are pre-defined con-
stants. The above function measures the absolute differences
between the predicted and the manually annotated vowel on-
sets and offsets. Since the manual annotations are not exact,
we allow a mistake of εb and εe frames at the vowel onset and
offset respectively, and only panelize predictions that varies
by more than εb or εe frames.

Our training algorithm is based on training set of m ex-
amples, S = {(x1, t1), . . . , (xm, tm)}, which were manually
labeled. See Section 4 for a detailed description of the data.
Ideally, we would like to evaluate our predictions against the
manually annotated predictions using a cost function that does
take into account small variations in annotations. In the next
section we show how we find a function f from this set.

3. THE ARCHITECTURE

In this section we describe the two network architectures that
can be used as frame-level classifier for vowel detection. We
start by presenting the acoustic features we used as the input
for both architectures.

We extracted standard MFCC features (with energy, delta
and delta-delta), and concatenate to each frame the previous
and the next two frames. We also added the normalized pitch
[9] as an additional feature. The features were extracted in
frames of 10 msec and spanned a window of 25 msec. Overall
we had d = 196 features (5×39 MFCC + 1 pitch).

Input 14x14 2 outputs 1x1

Convolutional ConvolutionalSub-Sampling

6 feature maps 10x10 6 feature maps 5x5 12 feature maps 1x1

Fig. 1. CNN architecture

3.1. Convolutional neural network

Our first architecture is based on a variation of LeNet1 CNN
[7]. The input of the network is a matrix x ∈ R14×14 (we
reshape the input 196 features into a 14×14 matrix), and the
output is a number y ∈ [0, 1], indicating the probability that
a given speech frame is a vowel. Our network is composed
from four learned layers: two convolutional layers, a sub-
sampling layer and an output layer.

The first layer is a convolutional layer which has 6 feature
maps. Those are connected to the input layer using 6 kernels
of size 5×5. The second layer is a sub-sampling layer, we
use a 2×2 mean-polling-layer. The third layer has 12 feature
maps which are fully connected to all 6 mean-pooling-layer
using 72 kernels of size 5×5. Finally, we feed the output layer
with the output of the third layer. The output layer consists
two neurons corresponding to the occurrence of the vowel on
this frame. A simplified description of the networks can be
viewed in Figure 1.

The network is trained so as to minimize the mean square
error using stochastic gradient descent with mini-batches of
size mb, namely,

1

mb

mb∑
i=1

(yi − ŷi)2, (2)

where yi ∈ {0, 1} is 1 if the frame i is annotated as a vowel
and 0 otherwise, and ŷi ∈ (0, 1) is the network prediction.
The network was trained on 36,000 frames, a mini-batch size
of mb=50, fixed learning rate equal to 1 and 100 epochs. Our
implementation is based on a modified versions of the code in
[10]. All parameters were chosen on a validation set.

3.2. Deep belief network

Our second architecture is based on DBN. The network is
composed of five layers: an input layer, 3 hidden layers, and
an output layer. The input layer is composed of 196 inputs.
The first and second hidden layers are composed of 500 hid-
den units, the third hidden layer is composed of 2000 hidden
units and the output layer was uses softmax activation func-
tion. A simplified description of the networks can be viewed
in Figure 2.
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Fig. 2. DBN architecture

Due to the highly non-linear functions involved, DNNs
are difficult to train directly by stochastic gradient descent.
Hence, each layer is pre-trained in an unsupervised way to
model the previous layer expectation. In this work, we use
restricted Boltzmann machines (RBM) [11] to model the joint
distribution of the previous layers units in a DBN [12]. The
network is trained so as to minimize the cross entropy using
stochastic gradient descent with a line search:

−
mb∑
i=1

yi log ŷi, (3)

where yi and ŷi are the i-th frame annotation and the network
prediction, respectively. We pre-trained the system with 50
epochs per each layer, and 100 epochs for fine-tuning feed-
forward training. The network was trained on 36,000 frames,
with a mini-batch size ofmb=100, and a learning rate was 0.1.
Our implementation is based on the code in published by R.
Salakhutdinov and G. Hinton1. All parameters were chosen
on a validation set.

3.3. Smoothing

We converted the network output from a vector of probabil-
ities into a pair of vowel onset and offset. We rounded the
probability of each frame to be either zero or one. Then we
smoothed the resulted sequence to have a single chunk, rep-
resenting a continues vowel.

Notice that the function each network is trained to mini-
mize is different then in the desired cost function in (1). The
difference is due to the fact the the network examine single
frames at a time, and not build to work with variable length
inputs. Nevertheless, it turns out that while minimizing (2) or
(3) we get also good results when measuring the performance
using (1).

1http://www.cs.toronto.edu/˜hinton/
MatlabForSciencePaper.html

4. DATASET

The dataset used in our experiments contains speech seg-
ments that were composed from 64 native English speakers
(55 female) aged 18-34 with no history of speech or language
deficits. To obtain the recordings, participants were asked to
name aloud the noun depicted by a picture in two different
ways: with the picture present alone and when the picture
occurred at the end of a sentence. They were instructed to
produce the name as quickly as possible. To avoid misun-
derstanding the participants were first familiarized with the
pictures. Each recorded segment contains one English CVC
noun, where the list of vowels are: /i, E, ae, A, o, u/. The total
size of the data set is 2684 CVC speech segments.

Vowel duration was hand-measured in Praat [13]. Vowel
onsets and offsets were marked using cues from the wave-
form and spectrogram [14]. A second coder marked 25 %
of the data to assess measurement reliability. Measurements
were well correlated, r(627) = .84, p < .0001. A detailed
description of the dataset can be found in [3].

5. EXPERIMENTAL RESULTS

We compare the performance of both DNN architectures and
an HMM-based forced aligner to manual benchmark data
from picture naming of English monosyllabic words describe
in the previous section.

Forced alignment is an algorithm to align a sequence
of phonemes (or words) to the speech signal. The force
alignment gets as input a speech signal and a sequence of
phonemes (or words) uttered in the signal. The output of the
aligner is the location of each phoneme in the speech. The
forced alignment is based on an HMM trained as a phoneme
recognizer. In our experiments we used Penn Aligner [15],
which is HMM-based phoneme aligner trained with the HTK
toolkit2.

5.1. Baseline

First we compare the results of CNN and DBN to HMM on
the cost defined in (1). The result are presented in Table 1.
Each row in the table, corresponds to different values of εb and
εe, and the results of the deviations in msec of the onset and
the offset. For comparison, the inter-transcriber deviations are
on average 3.5 msec for the onset and 20 msec for the offset
(εb and εe are both 0).

It can be seen from the table that the performance of
HMM is slightly better than the performance of CNN except
for the onset in the higher values of εb and εe and much better
then the results of the DBN. Nevertheless, the CNN and DBN
does not need as input the sequence of uttered phonemes,
while the HMM does.

2http://htk.eng.cam.ac.uk



Table 1. Results of CNN, DBN and HMM relative to manual
annotation. Average deviation of onset and offset for different
values of εb and εe [in msec].

CNN DBN HMM
εb εe onset offset onset offset onset offset
0 0 21 36 62 106 15 25
10 15 20 33 61 102 12 20
20 40 7.3 22 60 98 9 12
30 50 3.5 19 55 97 6 10

Since both network architectures are not aimed to mini-
mize (1), we give here the misclassification error rate as well.
The CNN reaches misclassification rate of 4.57% while the
DBN reaches 22%, both of these results were measured on
the test set.

In the next subsections we perform a deeper analysis on
the results of CNN comparing them manually labeled ones.
We choose to preform the analysis on the CNN predictions
due to the poor results of the DBN.

5.2. Measurement Deviation

Figure 3 provides a comparison of the vowel durations from
the manual annotators (y-axis) vs. each algorithm (x-axis).

The mean squared error relative to the manual benchmark
was slightly higher for CNN (2.4 msec2) vs. HMM (1.8
msec2). To assess the reliability of this difference, the dis-
tribution of differences was estimated using 1,000 bootstrap
samples (created by resampling the observed differences in
mean squared error across the methods). The mean differ-
ence of 0.6 msec2 was reliable (95% confidence interval:
[0.3, 0.9]).

5.3. Model-Based Comparison

As noted in the introduction, vowel durations are used in stud-
ies addressing specific phonetic issues. These typically utilize
vowel durations as a dependent measure, examining how du-
ration is modulated by properties of: the context in which
vowels appear; the individuals producing the vowels; and the
particular stimuli that were used to elicit the productions. Sta-
tistical models are used to assess the importance of these fac-
tors. To illustrate, the study that provides the benchmark
data used here [3] examined how placing words in a con-
text that strongly emphasizes processing of sentence struc-
ture would influence speech articulation. Speakers named a
set of pictures both in isolation (where there is no need to
process sentence structure) as well as following a sentence
frame (strongly emphasizing the processing of sentence struc-
ture). In the speech field, hierarchical mixed-effects regres-
sions [16] are the current state-of-the-art analytic technique
for assessing the reliability of such effects. These allow esti-

mation of the effect of the variable of interest (e.g., context of
naming) while controlling for other properties. In this case,
the analysis [17] revealed that context had a reliable effect
(such that vowel durations were shorter when the picture was
named following a sentence context vs. in isolation).

Given the critical role that such statistical models play in
utilizing vowel duration data, our second evaluation method
to compares the properties of statistical models fit to manually
annotated data vs. data obtained from CNN or HMM.

5.3.1. Regression Model Structure

The source study here [3] manipulated two factors: the pro-
duction context (picture naming in isolation vs. following
a sentence) and the number of words phonologically similar
to the target that share its grammatical category (lexical den-
sity). To account for these factors, the model included a cen-
tered density measure which interacted with a contrast-coded
fixed effect reflecting production context (isolation vs. sen-
tence). Additional contrast-coded factors controlled for block
in which the picture was presented (first vs. second), as well
as the target vowel identity.

To control for idiosyncratic contributions from the ran-
dom sample of speakers (e.g., the specific individuals tested
here vs. all English speakers) and stimuli (e.g., the specific
words used here vs. all words of English), the model also
included crossed random effects. These included random in-
tercepts for participants and words, along with uncorrelated
random slopes for context and density by participant and con-
text by word.

To control for skew in the dependent measure, vowel du-
rations were log transformed prior to analysis. To control for
outliers, all models were refit after excluding observations
with standardized residuals greater than 2.5 [18]. To assess
whether a given factor made a significant contribution to vari-
ance in vowel duration, the likelihood ratio test was used to
compare models with vs. without the factor [19].

5.3.2. Comparison of Model Parameters

Table 2 provides the parameter estimates for fixed effects.
Several features of the manual annotation results are reflected
in models fit by both annotation methods. Most parameters
have the same sign. All methods show a significant shorten-
ing for naming in sentence contexts vs. isolation (χ2(1)s >
7.4, ps < .01).

There are also significant divergences. While all models
show that durations are longer in the second block, only CNN
found a (marginally) significant effect (χ2(1)s > 3.81, ps <
.051). Similarly, while all models show shorter durations for
vowels in words with more lexical neighbors, only the HMM
found a significant effect (χ2(1)s > 5.63, ps < .02). The
HMM also found significant effects of two factors related to
vowel identity (χ2(1)s > 4.15, ps < .05). Thus, by this



Fig. 3. Scatterplot of algorithm vs. manual annotation vowel
durations (in seconds)

method of drawing inferences from statistical models, CNN
lead to one false positive effect while HMM leads to three
false positives (out of 10 possible effects).

5.3.3. Comparison of Model Predictions

While phonetic studies typically draw inferences based on
assessments of individual predictors, an alternative means
of assessing such models is examining their predictions on
novel data. To generate such predictions, we performed 4-
fold cross-validation. We maintained a roughly even balance
of observations within each participant across high vs. low
density items (using a median split) and production contexts.

Figure 4 provides a comparison of model predictions. The
mean squared error, relative to the manual model, showed that
models fit to the automated data showed substantial deviations
in predictions. The model fit to CNN annotations showed a
mean squared error of 334 log msec2, significantly greater
than that of the HMM model (65 log msec2; bootstrapped
95% CI for difference [237, 302]). While both models show
divergence from the manual model, the HMM model’s pre-
dictions are more similar to than those of the CNN model.

Table 2. Table 1. Estimates for the effect of each fixed param-
eter on log vowel duration (in seconds). Bolded parameters
make significant contributions to variance.

Estimate
Parameter Manual CNN HMM

Intercept -1.7046 -1.861 -1.7768
Production Context -0.0561 -0.1414 -0.071
Lexical Density -0.0117 -0.0075 -0.0151
Density × Context 0.0002 -0.0001 -0.004
Block 0.0109 0.0379 0.0096

Vo
w

el

A vs. ae 0.0664 0.1232 0.035
E vs. A, ae -0.0538 -0.0307 -0.0584
i vs. E,A,ae -0.0393 -0.0429 -0.0346
o vs. i,E,A,ae 0.0025 -0.0117 0.0091
u vs. all others 0.0005 -0.0052 -0.022

6. DISCUSSION AND FUTURE WORK

While both HMM and CNN annotations yield duration values
that are, on average, quite similar to manual annotations, nei-
ther method yields the same conclusions as would be drawn
from manually-annotated data. In our test set, both algorithms
recovered an effect that was reliable in manually-annotated
data; however, both also yielded false positives. Moreover,
both automatic annotation methods yielded different predic-
tions than models fit to manually annotated data. Neither
method was clearly superior in terms of matching the man-
ual annotations; CNN resulted in fewer incorrect inferences
regarding significant effects, but the HMM model predictions
were clearly more like those of models fit to manually anno-
tated data.

We believe these results are promising since they show
that neural networks, especially CNNs, can reach perfor-
mance comparable to HMM-based models with no need for
phonetic transcription. However, we would emphasize that
these are initial results for the CNN and there is much room
for exploring new architectures in the neural network field
such as deeper networks with more layers or hidden units.
The most promising direction would probably be focused on
recurrent neural networks.
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