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Abstract

Voice onset time (VOT) is defined as the time difference
between the onset of the burst and the onset of voic-
ing. When voicing begins preceding the burst, the stop
is called prevoiced, and the VOT is negative. When voic-
ing begins following the burst the VOT is positive. While
most of the work on automatic measurement of VOT has
focused on positive VOT mostly evident in American En-
glish, in many languages the VOT can be negative. We
propose an algorithm that estimates if the stop is pre-
voiced, and measures either positive or negative VOT, re-
spectively. More specifically, the input to the algorithm
is a speech segment of an arbitrary length containing a
single stop consonant, and the output is the time of the
burst onset, the duration of the burst, and the time of the
prevoicing onset with a confidence. Manually labeled
data is used to train a recurrent neural network that can
model the dynamic temporal behavior of the input signal,
and outputs the events’ onset and duration. Results sug-
gest that the proposed algorithm is superior to the current
state-of-the-art both in terms of the VOT measurement
and in terms of prevoicing detection.
Index Terms: voice onset time, prevoicing, recurrent
neural networks

1. Introduction

Voice onset time (VOT), the time between the onset of a
stop burst and the onset of voicing, is an important cue
to stop voicing and place. It is widely measured in the-
oretical and clinical settings, for example to characterize
how communication disorders affect speech [1] or how
languages differ in the phonetic cues to stop contrasts
[2, 3]; it is also increasingly used as a feature for auto-
matic speech recognition (ASR) tasks such as stop con-
sonant classification [4, 5, 6]. Automatic VOT measure-
ment would be very beneficial for clinical and theoretical
studies, where it is currently usually measured manually,
and is essential for ASR applications.

Several recent studies have proposed VOT measure-

ment algorithms [5, 6, 7, 8, 9, 10],1 all making the as-
sumption that VOT is always positive (burst onset pre-
cedes voicing onset). However, this assumption is well
known to be false. VOT can in general also be negative
(voicing onset precedes burst onset), in which case the
stop is “prevoiced.” In English, for example, voiceless
stops (/p/, /t/, /k/) always have positive VOT, while voiced
stops (/b/, /d/, /g/) can have positive or negative VOT [11].
In other languages (e.g., Dutch, French, Spanish), voiced
stops usually have negative VOT, while voiceless stops
have positive VOT [12, 11].

We are aware of only a single work [13] that handles
both positive and negative VOTs by extending [8]. In that
work two parallel classifiers were jointly trained: one for
measuring positive VOTs and one for measuring negative
VOTs. The classifiers operated on two sets of customized
features based on spectro-temporal cues to the location of
the burst and voicing onsets in the positive and negative
VOT cases.

Current algorithms that focus on positive VOT solve
two challenges in VOT measurement: detection of the
onset of the burst and the onset of the voicing of the
vowel. We extend these algorithms by addressing two ad-
ditional challenges: determining whether or not prevoic-
ing is present, and, when it is present, the onset of pre-
voicing. To simultaneously address all four challenges,
we develop an algorithm that identifies up to four regions
in each input utterance:

1. Silence: From utterance onset to prevoicing onset
2. Prevoicing: From prevoicing onset to burst onset
3. Burst/Aspiration: From burst onset to onset of

voicing of vowel
4. Vowel: From onset of vowel voicing to end of ut-

terance
We train a multiclass recurrent neural network to clas-

sify each frame of the input utterance as part of each re-
gion. We then use a dynamic programming algorithm to
find the best segmentation of the utterance based on the
classifier predictions, yielding the desired time points for

1This list is not exhaustive, due to space considerations.



calculating VOT.
Below, we outline our approach. We then assess its

performance, first in the well-studied problem of posi-
tive VOT measurement and then in the less well studied
case of measurement of prevoicing. We show that our al-
gorithm out performs state-of-the-art alternatives in both
cases, suggesting that it can provide a solution to the gen-
eral problem of VOT measurement.

2. Problem definition
The input to our algorithm is a speech utterance contain-
ing a single stop consonant, and the output is the voice
onset time (VOT), that is, the time difference between the
onset of the burst and the onset of voicing. When voicing
begins preceding the burst, the output is the time differ-
ence between the onset of the prevoicing and the onset
of the burst. The input utterance can be of an arbitrary
length, and its beginning need not be synchronized with
the prevoicing (if exists), the burst onset, the voicing on-
set, or the closure. It is required that the input utterance
includes the burst, part of the vowel and the whole region
of prevoicing (if exists).

Let x̄ = (x1, . . . ,xT ) denotes the input speech ut-
terance, represented as a sequence of acoustic feature
vectors, where each xt ∈ RD (1 ≤ t ≤ T ) is a D-
dimensional vector. The length of the speech utterance,
T , is not a fixed value since the input utterances can have
different durations.

Each input utterance is associated with three ele-
ments: the prevoicing onset, tpv ∈ T , the onset of the
burst, tb ∈ T , and the onset of the voicing of the vowel,
tv ∈ T , where T = {1, . . . , T}, and tpv < tb < tv . In
the case of positive lag stops the prevoicing onset does
not exist and tpv is assigned to be −1, and the VOT is
tv − tb, whereas in the case of negative lag (prevoiced)
stops, all the three elements are defined and the VOT is
tb − tpv . Our notation is depicted in Figure 1.

3. Learning apparatus
3.1. Features

Seven (D=7) acoustic features are extracted from the
speech signal every 1 ms [8]. The first five features re-
fer to an STFT taken with a 5 ms Hamming window: the
total spectral energy (Etotal), energy between 50–1000Hz
(Elow), energy above 3000 Hz (Ehigh), Wiener entropy
(Hwiener), and the number of zero crossings of the signal
(ZC). Features 6–7 are the maximum of the FFT of the
autocorrelation function of the signal from 6 ms before to
18 ms after the frame center (Rl), and a binary voicing
detector based on the RAPT pitch tracker [14], smoothed
with a 5 ms Hamming window (V ).

In addition, we also use the cumulative mean, differ-
ences and max of these features similar to the feature
functions used in [8] as another input to the classifier.
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Figure 1: Annotation example for prevoicing, burst and
voicing onsets. The spoken word in this wav form is
“dug.”

These feature maps were chosen by empirical examina-
tion of the spectra and waveform of voiced stops with
and without prevoicing. Overall we have 63 features per
frame.

3.2. Recurrent neural network

One approach to determining the duration of a phonetic
property is to predict at each time frame whether the
property is present or absent; the predicted duration is
then the smoothed, continuous set of frames where the
property is likely to be present [15]. In this work we ex-
tend this method, generating predictions using a Recur-
rent Neural Network (RNN). This allows the prediction
of whether a property is present to be sensitive to the re-
lationship between frames.

We implement a network of two-layers of stacked
LSTMs [16], which has shown considerable success in
analyzing dynamic temporal behavior [17, 18]. We use
an in-house implementation that is based on the Torch7
toolkit [19, 20]. Formally, the implementation is the fol-
lowing set of recursive equations, where the weights and
the biases are denoted by W and b, respectively, and σ
is the sigmoid function:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (1)
ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (2)
ct = ft � ct−1

+ it � tanh(Wxcxt + Whcht−1 + bc) (3)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (4)
ht = ot � tanh(ct) (5)

The input to the RNN classifier is a sequence of T
tuples, where each tuple is composed of the acoustic



features xt and a corresponding label yt from the set
Y ={silence, prevoicing, burst, vowel} for 1 ≤ t ≤ T
as follows:

yt =


silence 1 ≤ t < tpv

prevoicing tpv ≤ t < tb

burst tb ≤ t < tv

vowel tv ≤ t ≤ T

. (6)

We trained a multiclass RNN to predict the label of each
frame, and optimized the negative log-likelihood using
Adagrad [21] with learning rate of 0.1 and batch size
of 32 examples. We used two dropout layers after each
LSTM with dropout rate of 0.8. We stoped training the
network after 5 epochs with no loss improvement on the
validation set.

3.3. Inference

The Multiclass RNN outputs a probability for each class.
At inference time, we use these probabilities to predict
the most likely segmentation of the utterance. Since the
predictions can be noisy, and we require a smooth pre-
diction, we use a dynamic programming algorithm to in-
fer the best segmentation. This procedure is described in
Figure 2. Denote by P̂ (yt|xt) the predicted probability of
the network for the input xt and class yt, and denote by
Tm the maximum allowable size of each segment. Given
y = Y be the events in the utterance, and two time in-
dices t, t′ ∈ T , denote byD(y, t, t′) the score for the pre-
fix of the events sequence: silence,. . . , y, assuming that
their actual onsets are 1, tpv, . . . , t

′, and assuming that
yi+1 = t. The best sequence of actual onsets is obtained
from the algorithm by saving the intermediate values that
maximize each expression in the recursion step.

4. Experiments
In order to have better understanding on the capabilities
of the proposed model we divide the analyses into two
sections. First, we trained the network to measure only
positive VOT and compared it to the current state of the
art algorithm. We then trained the network to measure
positive and negative VOT jointly and compared it to the
current state of the art algorithm.

4.1. Positive VOT

To evaluate the performance of our model in measuring
positive VOT we used data from 9 speakers drawn from
the Northwestern University community [22]. Partici-
pants read aloud tongue twisters consisting of alternat-
ing pairs of voiced and voiceless consonants (e.g., pin
bin bin pin). Recordings were randomly assigned to two
highly trained coders. VOT was coded via inspection of
the waveform, from burst to onset of periodicity in the
vowel. Reliability (n = 257 tokens from 5 participants)

Initialization:
for y =[silence]

Dneg(y, t, 0) = P̂ (y|xt) 1 ≤ t ≤ Tm

Dpos(y, t, 0) = P̂ (y|xt) 1 ≤ t ≤ Tm

Recursion:
for y =[prevoicing, burst, vowel]

Dneg(y, t
′, t′′) = max

t′′′

t′∑
t=t′′

P̂ (y|xt)+Dneg(y−1, t′′′, t′′)

for y =[burst, vowel]

Dpos(y, t
′, t′′) = max

t′′′

t′∑
t=t′′

P̂ (y|xt) +Dpos(y−1, t′′′, t′′)

Termination: for y =[vowel]

D? = max
t′

{
Dneg(y, T, t

′), Dpos(y, T, t
′)
}

Figure 2: Dynamic programming algorithm for post-process
inference.

was very high (r = 0.996).
We trained the network on data from 4 speakers

(7,654 acoustic segments), with 15% from the data for
validation, and tested on data from the remaining 5 speak-
ers (8,628 acoustic segments). Overall we used 504,790
frames for training, 89,080 frames for validation and
143,458 frames for test. The dataset is roughly bal-
anced with respect to the number of VOT and none-VOT
frames. We denote our system as DeepVOT. The same
dataset with the same data split was used to train the al-
gorithm in [8], denoted AutoVOT. Table 1 summarizes the
distribution of automatic/manual differences over the test
set.

Table 1: Proportion of differences between automatic and
manual measures falling at or below a given tolerance
value (in msec). For example, for DeepVOT, in 75.3%
of examples in the test set the difference between auto-
matic and manual measurements was 2 msec or less.

Model t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

AutoVOT
mean 50.5 79.1 91.7 94.4 96.8 98.8

std 4.5 4.7 2.6 1.9 1.2 0.6

DeepVOT
mean 75.3 91.9 95.9 97.1 98.2 99.1

std 9.4 3.4 1.6 1.1 0.9 0.7

Results suggests that our algorithm is superior to the
AutoVOT algorithm; DeepVOT exhibits smaller devia-
tions from manual measurements. This is a non-trivial
improvement, especially when the tolerance value, t, is
small, i.e. 2 or 5 msec.

To see if the system suffers a decline in results



Table 2: Performance when the system was trained on
data from participants at Northwestern University and
tested on a second dataset from Purdue University. Pro-
portion of differences between automatic and manual
measures falling at or below a given tolerance value (in
msec).

Type t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

Voiced 63.1 91.9 96.9 98.3 99.3 100

Voiceless 56.5 81.6 86.8 87.2 87.3 89.0

when using a model that was trained on one dataset
but tested on a different one, we evaluated this trained
DeepVOT system on a new data set. We examined
positive-lag VOTs from 16 native English speakers at
Purdue University who read aloud a list of printed words
three times. Recordings were randomly assigned to four
trained coders. The VOT intervals were coded via inspec-
tion of the waveform and the spectrogram of word- initial
stops. Positive VOT was measured from the onset of burst
until the onset of periodicity in the vowel. All segmenta-
tions were inspected by a fifth, highly trained coder and
corrected if needed. It can be seen from Table 2 that sys-
tem performance was quite high even when testing on a
novel dataset.

4.2. Negative VOT (prevoicing)

Next, we investigated the performance of our algorithm
regarding negative VOT (prevoicing) measurement. We
use the data set from a study of isolated word produc-
tions in picture naming and reading aloud by L1 English
speakers and L1 Portuguese/L2 English bilinguals from
the Northwestern University community [23]. All to-
kens were measured by one highly trained coder. Pre-
voicing, burst, and onset of periodicity in the vowel were
coded via inspection of the waveform. Reliability was
assessed by a second trained coder who measured 958
tokens; agreement was very high (r = 0.972).

We used a subset of this data consisting of 1446 word-
initial voiced stops produced by 10 speakers (3 mono-
lingual, 7 bilingual), evenly split between prevoiced and
short-lag VOT. We used 1074 acoustic segments for a
training set, with 15% of these used as validation set
(146,254 frames for training set, 25,809 frames for val-
idation set). The test set contained 372 acoustic segments
(60,881 frames). Prevoiced and short-lag were evenly
sampled in training, test and validation sets.

The network did extremely well at detecting prevoic-
ing, with accuracy rate of 97.8%, precision rate of 95.9%
and recall rate of 100%. To evaluate performance in mea-
suring VOT, we report results of the percentage of test ex-
amples where automatic and manual VOT measurements
differed by less than a series of time thresholds. For this

Table 3: Performance on dataset including prevoicing.
Proportion of differences between automatic and manual
measures falling at or below a given tolerance value (in
msec).

Model Type t ≤2 t ≤5 t ≤10 t ≤15 t ≤25 t ≤50

A
ut

oV
O

T

neg (correct) 53.9 77.1 92.7 96.0 98.8 100

neg (all) 49.4 70.8 85.2 88.2 91.0 95.3

pos (correct) 53.2 84.4 97.2 98.3 98.7 99.0

pos (all) 47.9 75.9 87.5 88.6 89.4 95.1

D
ee

pV
O

T

neg (correct) 63.5 78.1 91.0 95.0 98.9 100

neg (all) 60.7 75.8 89.8 94.6 98.4 100

pos (correct) 80.1 95.7 98.4 98.9 100 100

pos (all) 80.1 95.7 98.4 98.9 100 100

analysis, in cases where the manual and network disagree
in the presence of prevoicing, the duration of VOT was set
by the following rule:
• If the network classifies the input as negative VOT,

but the manual annotation was positive, we con-
sider the prevoicing duration as the VOT.

• If the network classifies the input as positive VOT,
but the manual annotation was negative, we con-
sider the burst duration as the VOT.

We compared our result to the state-of-the-art results on
this dataset, reported in [13], provide a baseline for the
DeepVOT algorithm’s performance. The results are sum-
marized in Table 3.

5. Discussion
We have presented a new system for detecting positive
and negative VOTs. Our method is based on sequential
deep learning, which allows us to use the same learning
framework and the same set of feature set for measur-
ing both positive and negative VOTs. For future work
we would like to explore the option of optimizing the
network end-to-end including the dynamic programming
post-processing. Such optimization may further improve
the accuracy of such networks.

This approach opens up the possibility of extending
automatic analysis of VOT beyond prototypical English
productions to cover the many languages that consistently
utilize prevoicing. DeepVOT will be publicly available at
https://github.com/adiyoss/DeepVOT.
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